CSE 517 Natural Language Processing Winter 2015

Frames Yejin Choi

Some slides adapted from Martha Palmer, Chris Manning, Ray Mooney, Lluis Marquez ...

Overview

- Dependency Tree (very briefly)
- Selectional Preference

Frames

Dependency structure

- Words are linked from head to dependent
- Warning! Some people do the arrows one way; some the other way
- Usually add a fake ROOT so every word is a dependent
- The idea of dependency structure goes back a long way
 - To Pāņini's grammar (c. 5th century BCE)
- Constituency is a new-fangled invention
 - 20th century invention

Relation between CFG to dependency parse

- Head
 - A dependency grammar has a notion of a head
 - Officially, CFGs don't
 - But modern linguistic theory and all modern statistical parsers (Charniak, Collins, Stanford, ...) do, via hand-written phrasal "head rules":

Conversion between CFG and Dependency Tree

- The head rules can be used to extract a dependency parse from a CFG parse (follow the heads).
- The extracted dependencies might not be correct (nonprojective dependencies cannot be read off from CFG)
- A phrase structure tree can be obtained from a dependency tree, but dependents are flat (no VP!)

Projective Dependencies

- Projective dependencies: when the tree edges are drawn directly on a sentence, it forms a tree (without a cycle), and there is no crossing edge.
- Projective Dependency:

Eg:

Non Projective Dependencies

Example from Mcdonald and Satta (2007)

Extracting grammatical relations from statistical constituency parsers

[de Marneffe et al. LREC 2006]

- Exploit the high-quality syntactic analysis done by statistical constituency parsers to get the grammatical relations [typed dependencies]
- Dependencies are generated by pattern-matching rules

Grammatical Roles

- Dependency relations closely relate to grammatical roles
- Argument Dependencies
 - nsubj nominal subject
 - nsubjpass nominal subject in passive voice
 - dobj direct object
 - pobj object of preposition
- Modifier Dependencies
 - det determiner
 - prep prepositional modifier
 - mod
- Online Demos:
 - Stanford parser: <u>http://nlp.stanford.edu:8080/parser/</u>
 - Turbo parser: <u>http://demo.ark.cs.cmu.edu/parse</u>

Overview

Dependency Tree

Selectional Preference

Frames

Selectional Preference

- Semantic relations between predicates -- arguments
- Selectional Restriction:
 - semantic type constraint a predicate imposes on its arguments ---certain semantic types are not allowed
 - I want to eat someplace that's close to school.
 - => "eat" is intransitive
 - I want to eat Malaysian food.
 - => "eat" is transitive
 - "eat" expects its object to be edible (when the subject is an animate).
- Selectional Preference:
 - Preferences among allowed semantic types
 - [a living entity] eating [food]
 - [concerns, zombies, ...] eating [a person]

Selectional Preference

- Some words have stronger selectional preference than others
 - imagine ...
 - diagonalize ...
- P(C) := the distribution of semantic classes (concepts)
- P(C|v) := the distribution of semantic classes of the object of the given verb 'v'
 - What does it mean if P(C) = P(C|v) ?
- How to quantify the distance between two distributions?
 - Kullback-Leibler divergence (KL divergence)

$$D(P||G) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Selectional Preference

Selectional preference of a predicate 'v':

$$S(v) = D(P(C|v)||P(C)) = \sum_{c} P(c|v) \log \frac{P(c|v)}{P(c)}$$

Selectional association between 'v' and 'c' (Resnik 1996)

$$A(v,c) = \frac{1}{S(v)} P(c|v) \log \frac{P(c|v)}{P(c)}$$

	Direct Object		Direct Object	
Verb	Semantic Class	Assoc	Semantic Class	Assoc
read	WRITING	6.80	ACTIVITY	20
write	WRITING	7.26	COMMERCE	0
see	ENTITY	5.79	METHOD	-0.01

• KL Divergence
$$D(P||G) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Overview

Dependency Tree

Selectional Preference

Frames

Frames

"Case for Case"

• Theory:

Frame Semantics (Fillmore 1968)

Resources:

- VerbNet(Kipper et al., 2000)
- FrameNet (Fillmore et al., 2004)
- PropBank (Palmer et al., 2005)
- NomBank
- Statistical Models:
 - Task: Semantic Role Labeling (SRL)

Frame Semantics

- Frame: Semantic frames are schematic representations of situations involving various participants, props, and other conceptual roles, each of which is called a frame element (FE)
- These include events, states, relations and entities.
- ✓ **Frame**: *"The case for case"* (Fillmore 1968)
 - 8k citations in Google Scholar!
- ✓ Script: knowledge about situations like eating in a restaurant.
 - "Scripts, Plans, Goals and Understanding: an Inquiry into Human Knowledge Structures" (Schank & Abelson 1977)
- Political Framings: George Lakoff's recent writings on the framing of political discourse.

C4C: Capturing Generalizations over Related Predicates & Arguments

Example from Ken Church (at Fillmore tribute workshop)

Case Grammar -> Frames

- Valency: Predicates have arguments (optional & required)
 - Example: "give" requires 3 arguments:
 - Agent (A), Object (O), and Beneficiary (B)
 - Jones (A) gave money (O) to the school (B)
- Frames:
 - commercial transaction frame: Buy/Sell/Pay/Spend
 - Save <good thing> from <bad situation>
 - Risk <valued object> for <situation>|<purpose>|<beneficiary>|<motivation>
- Collocations & Typical predicate argument relations
 - Save whales from extinction (not vice versa)
 - Ready to risk everything for what he believes
- Representation Challenges: What matters for practical NLP?
 - POS? Word order? Frames (typical predicate arg relations)?

Slide from Ken Church (at Fillmore tribute workshop)

Thematic (Semantic) Roles

- AGENT the volitional causer of an event
 - The waiter spilled the soup
- EXPERIENCER the experiencer of an event
 - John has a headache
- FORCE the non-volitional causer of an event
 - The wind blows debris from the mall into our yards.
- THEME the participant most directly affected by an event
 - Only after Benjamin Franklin broke the ice ...
- RESULT the end product of an event
 - The French government has built a regulation-size baseball diamond ...

Thematic (Semantic) Roles

- INSTRUMENT an instrument used in an event
 - He turned to poaching catfish, stunning them with a shocking device ...
- BENEFICIARY the beneficiary of an event
 - Whenever Ann makes hotel reservations for her boss ...
- SOURCE the origin of the object of a transfer event
 - I flew in from Boston
- GOAL the destination of an object of a transfer event
 - I drove to Portland
- Can we read semantic roles off from PCFG or dependency parse trees?

Semantic roles **#** Grammatical roles

- Agent the volitional causer of an event
 - usually "subject", sometimes "prepositional argument", ...
- Theme the participant directly affected by an event
 - usually "object", sometimes "subject", ...
- Instrument an instrument (method) used in an event
 - usually prepositional phrase, but can also be a "subject"
- John broke the window.
- John broke the window with a rock.
- The rock broke the window.
- The window broke.
- The window was broken by John.

Ergative Verbs

- Ergative verbs
 - subject when intransitive = direct object when transitive.
 - "it broke the window" (transitive)
 - "the window broke" (intransitive).
- Most verbs in English are *not* ergative (the subject role does not change whether transitive or not)
 - "He ate the soup" (transitive)
 - "He ate" (intransitive)
- Ergative verbs generally describe some sort of "changes" of states:
 - Verbs suggesting a change of state break, burst, form, heal, melt, tear, transform
 - Verbs of cooking bake, boil, cook, fry
 - Verbs of movement *move, shake, sweep, turn, walk*
 - Verbs involving vehicles *drive, fly, reverse, run, sail*

FrameNet

Words in "change_position_on _a_scale" frame:

VERBS:	dwindle	move	soar	escalation	shift
advance	edge	mushroom	swell	explosion	tumble
climb	explode	plummet	swing	fall	
decline	fall	reach	triple	fluctuation	ADVERBS:
decrease	fluctuate	rise	tumble	gain	increasingly
diminish	gain	rocket		growth	
dip	grow	shift	NOUNS:	hike	
double	increase	skyrocket	decline	increase	
drop	jump	slide	decrease	rise	

- Frame := the set of words sharing a similar predicateargument relations
- Predicate can be a verb, noun, adjective, adverb
- The same word with multiple senses can belong to multiple frames

Roles in "change_position_on _a_scale" frame

Core Roles		
ATTRIBUTE	The ATTRIBUTE is a scalar property that the ITEM possesses.	
DIFFERENCE	The distance by which an ITEM changes its position on the	
	scale.	
FINAL_STATE	A description that presents the ITEM's state after the change in	
	the ATTRIBUTE's value as an independent predication.	
FINAL_VALUE	The position on the scale where the ITEM ends up.	
INITIAL_STATE	A description that presents the ITEM's state before the change	
	in the ATTRIBUTE's value as an independent predication.	
INITIAL_VALUE	The initial position on the scale from which the ITEM moves	
	away.	
ITEM	The entity that has a position on the scale.	
VALUE_RANGE	A portion of the scale, typically identified by its end points,	
	along which the values of the ATTRIBUTE fluctuate.	
Some Non-Core Roles		
DURATION	The length of time over which the change takes place.	
SPEED	The rate of change of the VALUE.	
GROUP	The GROUP in which an ITEM changes the value of an	
	ATTRIBUTE in a specified way.	

Example

	[Oil] rose [in price] [by 2%].
ATTRIBUTE DIFFERENCE	
DIFFERENCE	[It] has increased [to having them 1 day a month].
FINAL_STATE	
FINAL_VALUE	 [Microsoft shares] fell [to 7 5/8].
INITIAL_STATE	
T	[cancer incidence] fell [by 50%] [among men].
INITIAL_VALUE	
ITEM	a steady increase [from 9.5] [to 14.3] [in dividends].
VALUE_RANGE	
DURATION	a [5%] [dividend] increase
SPEED	
GROUP	

Find "Item" roles?

ATTRIBUTE	 [Oil] rose [in price] [by 2%].
DIFFERENCE FINAL_STATE	 [It] has increased [to having them] [1 day a month].
FINAL_VALUE INITIAL_STATE	 [Microsoft shares] fell [to 7 5/8].
INITIAL_VALUE	 [cancer incidence] fell [by 50%] [among men].
ITEM VALUE_RANGE	 a steady increase [from 9.5] [to 14.3] [in dividends].
DURATION SPEED GROUP	 a [5%] [dividend] increase

Find "Difference" & "Final_Value" roles?

ATTRIBUTE	 [Oil] rose [in price] [by 2%].
DIFFERENCE FINAL_STATE	 [It] has increased [to having them] [1 day a month].
FINAL_VALUE INITIAL_STATE	 [Microsoft shares] fell [to 7 5/8].
INITIAL_VALUE	 [cancer incidence] fell [by 50%] [among men].
ITEM VALUE_RANGE	 a steady increase [from 9.5] [to 14.3] [in dividends].
DURATION	a [5%] [dividend] increase
SPEED GROUP	

FrameNet (2004)

- Project at UC Berkeley led by Chuck Fillmore for developing a database of frames, general semantic concepts with an associated set of roles.
- Roles are specific to frames, which are "invoked" by the predicate, which can be a verb, noun, adjective, adverb
 - JUDGEMENT frame
 - Invoked by: V: blame, praise, admire; N: fault, admiration
 - Roles: JUDGE, EVALUEE, and REASON
- Specific frames chosen, and then sentences that employed these frames selected from the British National Corpus and annotated by linguists for semantic roles.
- Initial version: 67 frames, 1,462 target words, 49,013 sentences, 99,232 role fillers

PropBank (proposition bank)

PropBank := proposition bank (2005)

- Project at Colorado lead by Martha Palmer to add semantic roles to the Penn treebank.
- Proposition := verb + a set of roles
- Annotated over 1M words of Wall Street Journal text with existing gold-standard parse trees.
- Statistics:
 - 43,594 sentences
 99,265 propositions
 - 3,324 unique verbs 262,281 role assignments

PropBank argument numbering

- Numbered roles, rather than named roles.
 - Arg0, Arg1, Arg2, Arg3, …
- Different numbering scheme for each verb sense.
- The general pattern of numbering is as follows.
- Arg0 = "Proto-Agent" (agent)
- Arg1 = "Proto-Patient" (direct object / theme / patient)
- Arg2 = indirect object (benefactive / instrument / attribute / end state)
- Arg3 = start point (benefactive / instrument / attribute)
- Arg4 = end point

Different "frameset" for each verb sense

- Mary left the room.
- Mary left her daughter-in-law her pearls in her will.

Frameset **leave.01** "move away from": Arg0: entity leaving Arg1: place left

Frameset **leave.02** "give": Arg0: giver Arg1: thing given Arg2: beneficiary

PropBank argument numbering

Argument numbering conserving the common semantic roles shared among predicates that belong to a related frame

Ergative Verbs

Sales rose 4% to \$3.28 billion from \$3.16 billion.

The Nasdaq composite index <u>added</u> 1.01 to 456.6 on paltry volume.

Semantic Roles (per PropBank) Arg0 = None (unaccusative, i.e, no agent) Arg1 = patient, thing rising Arg2 = amount risen Arg3 = start point Arg4 = end point

Semantic Role Labeling

Semantic Role Labeling (Task)

- Shallow meaning representation beyond syntactic parse trees
- Question Answering
 - "Who" questions usually use Agents
 - "What" question usually use Patients
 - "How" and "with what" questions usually use Instruments
 - "Where" questions frequently use Sources and Destinations.
 - "For whom" questions usually use Beneficiaries
 - "To whom" questions usually use Destinations
- Machine Translation Generation
 - Semantic roles are usually expressed using particular, distinct syntactic constructions in different languages.
- Summarization, Information Extraction

SRL $\stackrel{def}{=}$ detecting basic event structures such as *who* did *what* to *whom*, *when* and *where* [IE point of view]

SRL ^{def} = identify the arguments of a given verb and assign them semantic labels describing the *roles* they play in the predicate (i.e., identify predicate argument structures) [CL point of view]

Linguistic nature of the problem

Argument identification is strongly related to syntax

Role labeling is a semantic task

e.g., selectional preferences should play an important role

SRL as Parse Node Classification

- Assume that a syntactic parse is available
- Treat problem as classifying parse-tree nodes.
- Can use any machine-learning classification method.
- Critical issue is engineering the right set of features for the classifier to use.

Color Code: not-a-role agent patient source destination instrument beneficiary

Issues in Parse Node Classification

- Results may violate constraints like "an action has at most one agent"?
 - Use some method to enforce constraints when making final decisions. i.e. determine the most likely assignment of roles that also satisfies a set of known constraints.
- Due to errors in syntactic parsing, the parse tree is likely to be incorrect.
 - Try multiple top-ranked parse trees and somehow combine results.
 - Integrate syntactic parsing and SRL.

Syntactic Features for SRL

- Phrase type: The syntactic label of the candidate role filler (e.g. NP).
- Parse tree path: The path in the parse tree between the predicate and the candidate role filler.

Parse Tree Path Feature: Example 1

Path Feature Value: $\mathbf{V} \uparrow \mathbf{VP} \uparrow \mathbf{S} \downarrow \mathbf{NP}$

Parse Tree Path Feature: Example 2

Features for SRL

- Phrase type: The syntactic label of the candidate role filler (e.g. NP).
- Parse tree path: The path in the parse tree between the predicate and the candidate role filler.
- Position: Does candidate role filler *precede* or *follow* the predicate in the sentence?
- Voice: Is the predicate an *active* or *passive* verb?
- Head Word: What is the head word of the candidate role filler?

Features for SRL

Selectional Preference

- Selectional preference/restrictions are constraints that certain verbs place on the filler of certain semantic roles.
 - Agents should be animate
 - Beneficiaries should be animate
 - Instruments should be tools
 - Patients of "eat" should be edible
 - Sources and Destinations of "go" should be places.
 - Sources and Destinations of "give" should be animate.
- Taxanomic abstraction hierarchies or ontologies (e.g. hypernym links in WordNet) can be used to determine if such constraints are met.
 - "John" is a "Human" which is a "Mammal" which is a "Vertebrate" which is an "Animate"

Selectional Preference & Syntactic Ambiguity

- Many syntactic ambiguities like PP attachment can be resolved using selectional restrictions.
 - "John ate the spaghetti with meatballs.""John ate the spaghetti with chopsticks."
 - Instruments should be tools
 - Patients of "eat" must be edible
 - "John hit the man with a dog.""John hit the man with a hammer."
 - Instruments should be tool

Use of Sectional Restrictions

- Selectional restrictions can help rule in or out certain semantic role assignments.
 - "John bought the car for \$21K"
 - Beneficiaries should be Animate
 - Instrument of a "buy" should be Money
 - "John went to the movie with Mary"
 - Instrument should be Inanimate
 - "John drove Mary to school in the van"
 "John drove the van to work with Mary."
 - Instrument of a "drive" should be a Vehicle

SRL ^{def} = identify the arguments of a given verb and assign them semantic labels describing the *roles* they play in the predicate (i.e., identify predicate argument structures) [**CL** point of view]

When can we expect to learn frames?

- Corpus-size requirements:
 - freq(content words) ≈ parts per million
- 1970s Corpora: 1 M words (Brown Corpus)
 - Large enough to make a list of common content words
- 1990s: 100 M words (British National Corpus)
 - Large enough to see associations of common predicates with function words
 - "save" + "from"
 - Useful for parsing phrasal verbs: V NP P (Hindle & Rooth, 1993)
 - Most parsers are trained on Brown Corpus
 - (too small for phrasal verbs, let alone conjunction)
- Coming soon: 1M² words (Google?)
 - Large enough to see associations of pairs of content words (collocations)
 - "give" + \$\$
 - "save" + "whale"
 - "save" + "extinction"
 - "risk" <valued object> for <purpose>
 - Useful for parsing every-way ambiguous Catalan Constructions (Church, 1980)
 - Conjunction, NN modification, PP attachment

Slide from Ken Church (at Fillmore tribute workshop)