CSE 517 Natural Language Processing Winter 2013

Phrase Based Translation

Luke Zettlemoyer

Slides from Philipp Koehn and Dan Klein

Phrase-Based Systems

Sentence-aligned corpus

Word alignments

cat ||| chat ||| 0.9 the cat ||| le chat ||| 0.8 dog ||| chien ||| 0.8 house ||| maison ||| 0.6 my house ||| ma maison ||| 0.9 language ||| langue ||| 0.9

Phrase table (translation model)

Phrase Translation Tables

informatics

- Defines the space of possible translations
 - each entry has an associated "probability"
- One learned example, for "den Vorschlag" from Europarl data

English	$\phi(ar{e} ar{f})$	English	$\phi(ar{e} f)$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

 This table is noisy, has errors, and the entries do not necessarily match our linguistic intuitions about consistency....

Phrase-Based Decoding

这	7人	中包括	来自	法国	和	俄罗斯	的	宇航	员	
the	7 people	including	by some		and	the russian	the	the astronauts	6	,
it	7 people incl	luded	by france		and the	the russian		international astronautical	of rapporteur .	2
this	7 out	including the	from	the french	and the 1	russian	the fiftl	1	×	
these	7 among	including from		the french a	ind	of the russian	of	space	members	10
that	7 persons	including from	the	of france	and to	russian	of the	aerospace	members .	
	7 include		from the	rom the of france and		russian		astronauts		. the
	7 numbers in	nclude	from france	france		and russian of		tronauts who		
	7 populations include those from fran-		e and russian			astronauts .				
:	7 deportees	included	come from	france	and rus	ssia	in	astronautical	personnel	;
	7 philtrum	7 philtrum including those from		france and russia		a space	ace member			
		including representatives from		france and the russia			astronaut			
		include	came from	france an	france and russia by		by cosn	smonauts		
		include represe	entatives from	french	french and russia		6. 84	cosmonauts		
		include	came from franc	e and russia 's		a 's	cosmonauts .			
		includes	coming from	french and	and russia 's			cosmonaut		
			8	french and	nd russian		's	astronavigation	member .	
				french	and russia		astron	onauts		
		1			and russi	ia 's			special rapporteur	
					, and	russia		Î.	rapporteur	
				8	, and rus	sia			rapporteur .	
)	(\$ 6	, and rus	sia			e review a	
		1			or	russia 's				

Decoder design is important: [Koehn et al. 03]

Extracting Phrases

We will use word alignments to find phrases

Question: what is the best set of phrases?

g a Phrase Translation Table Translation

Phrase alignment must

el from a parallel corpus

- Contain at least two aligned words
- Contain all alignments for phrase pair

using IBM models or other method se pairs

rs

Extract all such phrase pairs!

in

Phrase Pair Extraction Example

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green) (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)

(Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)

(Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch)

(Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)

Phrase Size

Phrases do help

 But they don't need to be long

Why should this be?

Bidirectional Alignment

Maria no daba una bofetada a la bruja verde Mary Image: Structure st

english to spanish

spanish to english

intersection

Alignment Heuristics

Phrase Scoring

$$g(f, e) = \log \frac{c(e, f)}{c(e)}$$

- Learning weights has been tried, several times:
 - [Marcu and Wong, 02]
 - [DeNero et al, 06]
 - ... and others
- Seems not to work well, for a variety of partially understood reasons
- Main issue: big chunks get all the weight, obvious priors don't help
 - Though, [DeNero et al 08]

Scoring:

- Basic approach, sum up phrase translation scores and a language model
 - Define $y = p_1 p_2 \dots p_L$ to be a translation with phrase pairs p_i
 - Define e(y) be the output English sentence in y
 - Let h() be the log probability under a tri-gram language model
 - Let g() be a phrase pair score (from last slide)
 - Then, the full translation score is:

$$f(y) = h(e(y)) + \sum_{k=1}^{L} g(p_k)$$

• Goal, compute the best translation

$$y^*(x) = \arg \max_{y \in \mathcal{Y}(x)} f(y)$$

The Pharaoh Decoder

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	<u>not</u> did not.	give			<u>to</u> <u>by</u>	<u>the</u>	witch green	green witch
		t.give		to				
			sl	ap		the v	witch	

Maria	no	dio una bofetada	a la	bruja	verde
Mary	did not	slap	the	green	witch

Scores at each step include LM and TM

Scoring:

- In practice, much like for alignment models, also include a distortion penalty
 - Define $y = p_1 p_2 \dots p_L$ to be a translation with phrase pairs p_i
 - Let s(p_i) be the start position of the foreign phrase
 - Let t(p_i) be the end position of the foreign phrase
 - Define η to be the distortion score (usually negative!)
 - Then, we can define a score *with distortion penalty*:

$$f(y) = h(e(y)) + \sum_{k=1}^{L} g(p_k) + \sum_{k=1}^{L-1} \eta \times |t(p_k) + 1 - s(p_{k+1})|$$

Goal, compute the best translation

$$y^*(x) = \arg \max_{y \in \mathcal{Y}(x)} f(y)$$

Hypothesis Expansion

- ... until all foreign words *covered*
 - find *best hypothesis* that covers all foreign words
 - backtrack to read off translation

Hypothesis Explosion!

- Q: How much time to find the best translation?
 - NP-hard, just like for word translation models
 - So, we will use approximate search techniques!

Hypothesis Lattices

Pruning

 $(e_{\sigma} \alpha = 0.001)$

Tons of Data?

Discussed for LMs, but can new understand full model!

Tuning for MT

- Features encapsulate lots of information
 - Basic MT systems have around 6 features
 - P(e|f), P(f|e), lexical weighting, language model
- How to tune feature weights?
- Idea 1: Use your favorite classifier

Why Tuning is Hard

- Problem 1: There are latent variables
 - Alignments and segementations
 - Possibility: forced decoding (but it can go badly)

Why Tuning is Hard

- Problem 2: There are many right answers
 - The reference or references are just a few options
 - No good characterization of the whole class

 BLEU isn't perfect, but even if you trust it, it's a corpus-level metric, not sentence-level

Perceptron training

For each training example (\mathbf{x}, \mathbf{y}) : [Collins '02]

$$\mathbf{w} \leftarrow \mathbf{w} + \Phi(\mathbf{x}, \mathbf{y}_t) \qquad \mathbf{y}_t = \mathbf{y} \\ -\Phi(\mathbf{x}, \mathbf{y}_p) \qquad \mathbf{y}_p = \text{Decode}(\mathbf{x})$$

 $\begin{array}{c|c} \mathbf{w} \leftarrow \mathbf{w} & +\Phi(\mathbf{x}, \mathbf{y}_t, \mathbf{h}_t) \\ & -\Phi(\mathbf{x}, \mathbf{y}_p, \mathbf{h}_p) \end{array} \begin{vmatrix} \mathbf{y}_t, \mathbf{h}_t &= \reomega \\ \mathbf{y}_p, \mathbf{h}_p &= \operatorname{DECODE}(\mathbf{x}) \end{vmatrix}$

 $\mathbf{w} \leftarrow \mathbf{w} + \Phi(\mathbf{x}, \mathbf{y}_{\mathsf{t}}, \mathbf{h}_{\mathsf{t}}) - \Phi(\mathbf{x}, \mathbf{y}_{\mathsf{p}}, \mathbf{h}_{\mathsf{p}})$

$$\mathbf{w} \leftarrow \mathbf{w} + \Phi(\mathbf{x}, \mathbf{y}_{t}, \mathbf{h}_{t}) - \Phi(\mathbf{x}, \mathbf{y}_{p}, \mathbf{h}_{p})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \Phi(\mathbf{x}, \mathbf{y}_{t}, \mathbf{h}_{t}) - \Phi(\mathbf{x}, \mathbf{y}_{p}, \mathbf{h}_{p})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \Phi(\mathbf{x}, \mathbf{y}_{\mathsf{t}}, \mathbf{h}_{\mathsf{t}}) - \Phi(\mathbf{x}, \mathbf{y}_{\mathsf{p}}, \mathbf{h}_{\mathsf{p}})$$

Why Tuning is Hard

Problem 3: Computational constraints

- Discriminative training involves repeated decoding
- Very slow! So people tune on sets much smaller than those used to build phrase tables

Minimum Error Rate Training

- Standard method: minimize BLEU directly (Och 03)
 - MERT is a discontinuous objective
 - Only works for max ~10 features, but works very well then
 - Here: k-best lists, but forest methods exist (Machery et al 08)

MERT

MERT

