Natural Language Processing

Parsing: PCFGs and Treebank Parsing

Luke Zettlemoyer - University of Washington
[Slides from Dan Klein, Michael Collins, and Ray Mooney]

Topics

- Parse Trees
- (Probabilistic) Context Free Grammars
- Supervised learning
- Parsing: most likely tree, marginal distributions
- Treebank Parsing (English, edited text)

Parse Trees

The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

Penn Treebank Non-terminals

Table 1.2. The Penn Treebank syntactic tagset

ADJP	Adjective phrase
ADVP	Adverb phrase
NP	Noun phrase
PP	Prepositional phrase
S	Simple declarative clause
SBAR	Subordinate clause
SBARQ	Direct question introduced by wh-element
SINV	Declarative sentence with subject-aux inversion
SQ	Yes/no questions and subconstituent of SBARQ excluding wh-element
VP	Verb phrase
WHADVP	Wh-adverb phrase
WHNP	Wh-noun phrase
WHPP	Wh-prepositional phrase
X	Constituent of unknown or uncertain category
$*$	"Understood" subject of infinitive or imperative
0	Zero variant of that in subordinate clauses
T	Trace of wh-Constituent

Phrase Structure Parsing

- Phrase structure parsing organizes syntax into constituents or brackets
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Not the only kind of syntax...

new art critics write reviews with computers

Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
- Substitution by proform
- he, she, it, they, ...
- Question / answer
- Deletion
- Movement / dislocation

- Conjunction / coordination
- Cross-linguistic arguments, too

Conflicting Tests

- Constituency isn't always clear
- Units of transfer:
- think about ~ penser à
- talk about ~ hablar de
- Phonological reduction:
- I will go \rightarrow I'll go
- I want to go \rightarrow I wanna go
- a le centre \rightarrow au centre

La vélocité des ondes sismiques

- Coordination
- He went to and came from the store.

Non-Local Phenomena

- Dislocation / gapping
- Which book should Peter buy?
- A debate arose which continued until the election.
- Binding
- Reference
- The IRS audits itself
- Control
- I want to go
- I want you to go

Classical NLP: Parsing

- Write symbolic or logical rules:

Grammar (CFG)

$$
\begin{array}{ll}
R O O T \rightarrow S & N P \rightarrow \text { NP PP } \\
S \rightarrow N P V P & V P \rightarrow V B P N P \\
N P \rightarrow D T N N & V P \rightarrow V B P \text { NP PP } \\
N P \rightarrow N N \text { NNS } & P P \rightarrow \text { N NP }
\end{array}
$$

Lexicon

$$
\begin{aligned}
& \text { NN } \rightarrow \text { interest } \\
& \text { NNS } \rightarrow \text { raises } \\
& \text { VBP } \rightarrow \text { interest } \\
& \text { VBZ } \rightarrow \text { raises }
\end{aligned}
$$

- Use deduction systems to prove parses from words
- Minimal grammar on "Fed raises" sentence: 36 parses
- Simple 10-rule grammar: 592 parses
- Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Ambiguities: PP Attachment

The children ate the cake with a spoon.

The board approved [its acquisitionNby Royal Trustco Ltd.]
$C_{\text {[of Toronto] }}$
[for $\$ 27$ a share]
[at its monthly meeting].

Attachments

- I cleaned the dishes from dinner
- I cleaned the dishes with detergent
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink

Syntactic Ambiguities I

- Prepositional phrases:

They cooked the beans in the pot on the stove with handles.

- Particle vs. preposition:

The puppy tore up the staircase.

- Complement structures

The tourists objected to the guide that they couldn't hear.
She knows you like the back of her hand.

- Gerund vs. participial adjective

Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions

The chicken is ready to eat.
The contractors are rich enough to sue.

- Coordination scope:

Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

- Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of
"This will panic buyers !"

- Unknown words and new usages

- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple <N, T, $\Sigma, R>$
- N : the set of non-terminals
- Phrasal categories: S, NP, VP, ADJP, etc.
- Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- Σ : the set of terminals (the words)
- S : the start symbol
- Often written as ROOT or TOP
- Not usually the sentence non-terminal S
- R : the set of rules
- Of the form $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$, with $X, Y_{i} \in N$
- Examples: S \rightarrow NP VP, VP \rightarrow VP CC VP
- Also called rewrites, productions, or local trees

Example Grammar

$\mathrm{S}=$ sentence, VP-verb phrase, NP=noun phrase, $\mathrm{PP}=$ prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, $\mathrm{NN}=$ noun, $\mathrm{IN}=$ preposition

\section*{$R=$	S	$\Rightarrow \mathrm{NP}$	VP
VP	\Rightarrow	Vi	\quad Example Parses}

VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

The man saw the woman with the telescope
$\mathrm{S}=$ sentence, VP -verb phrase, $\mathrm{NP}=$ noun phrase, $\mathrm{PP}=$ prepositional phrase, $\mathrm{DT}=$ determiner, $\mathrm{V}=$ i=intransitive verb, $\mathrm{Vt}=$ transitive verb, $\mathrm{NN}=$ noun, $\mathrm{IN}=$ preposition

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple <N, T, $\Sigma, R>$
- N : the set of non-terminals
- Phrasal categories: S, NP, VP, ADJP, etc.
- Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- Σ : the set of terminals (the words)
- S : the start symbol
- Often written as ROOT or TOP
- Not usually the sentence non-terminal S
- R : the set of rules
- Of the form $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$, with $X, Y_{i} \in N$
- Examples: $\mathrm{S} \rightarrow$ NP VP, VP \rightarrow VP CC VP
- Also called rewrites, productions, or local trees
- A PCFG adds:
- A top-down production probability per rule $P\left(X \rightarrow Y_{1} Y_{2} \ldots Y_{k}\right)$

PCFG Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow saw	1.0	
NN	\Rightarrow man	0.7	
NN	\Rightarrow woman	0.2	
NN	\Rightarrow telescope	0.1	
DT	\Rightarrow the	1.0	
IN	\Rightarrow with	0.5	
IN	\Rightarrow in	0.5	

- Probability of a tree t with rules

$$
\alpha_{1} \rightarrow \beta_{1}, \alpha_{2} \rightarrow \beta_{2}, \ldots, \alpha_{n} \rightarrow \beta_{n}
$$

is

$$
p(t)=\prod_{i=1}^{n} q\left(\alpha_{i} \rightarrow \beta_{i}\right)
$$

where $q(\alpha \rightarrow \beta)$ is the probability for rule $\alpha \rightarrow \beta$.

PCFG Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow in	0.5	

The man saw the woman with the telescope
$p\left(t_{s}\right)=1.8^{*} 0.3^{*} 1.0^{*} 0.7^{*} 0.2^{*} 0.4^{*} 1.0^{*} 0.3^{*} 1.0^{*} 0.2^{*} 0.4^{*} 0.5^{*} 0.3^{*} 1.0^{*} 0.1$

PCFGs: Learning and Inference

- Model
- The probability of a tree t with n rules $\alpha_{i} \rightarrow \beta_{i}, i=1$..n
- Learning

$$
p(t)=\prod_{i=1}^{n} q\left(\alpha_{i} \rightarrow \beta_{i}\right)
$$

- Read the rules off of labeled sentences, use ML estimates for probabilities

$$
q_{M L}(\alpha \rightarrow \beta)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

- and use all of our standard smoothing tricks!
- Inference
- For input sentence s, define $T(s)$ to be the set of trees whole yield is s (whole leaves, read left to right, match the words in s)

$$
t^{*}(s)=\arg \max _{t \in \mathcal{T}(s)} p(t)
$$

Chomsky Normal Form

- Chomsky normal form:
- All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
- In principle, this is no limitation on the space of (P)CFGs
- N -ary rules introduce new non-terminals

- Unaries / empties are "promoted"
- In practice it's kind of a pain:
- Reconstructing n-aries is easy
- Reconstructing unaries is trickier
- The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

The Parsing Problem

A Recursive Parser

```
bestScore(X,i,j,s)
    if (j = i+1)
    return tagScore(X,s[i])
    else
    return max m,X->YZ}\operatorname{score(X->YZ) *
        bestScore(Y,i,k,s) *
        bestScore(Z,k,j,s)
```

- Will this parser work?
- Why or why not?
- Memory/time requirements?
- Q: Remind you of anything? Can we adapt this to other models / inference tasks?

A Memoized Parser

- One small change:

```
bestScore(X,i,j,s)
if (scores[X][i][j] == null)
    if (j = i+1)
                score = tagScore(X,s[i])
    else
        score = max,X myZ}\operatorname{score (X->YZ) *
                        bestScore(Y,i,k,s)
                        bestScore(Z,k,j,s)
    scores[X][i][j] = score
return scores[X][i][j]
```


A Bottom-Up Parser (CKY)

- Can also organize things bottom-up

```
bestScore(s)
for (i : [0,n-1])
    for (X : tags[s[i]])
        score[X][i][i+1] =
        tagScore(X,s[i])
for (diff : [2,n])
        for (i : [0,n-diff])
        j = i + diff
        for (X->YZ : rule)
        for (k : [i+1, j-1])
            score[X][i][j] = max score[X][i][j],
                        score[Y][i][k] *
                        score[Z][k][j]
```


Probabilistic CKY Parser

$\mathbf{S} \rightarrow \mathbf{N P}$ VP	0.8	
S \rightarrow X1 VP	0.1	
X1 \rightarrow Aux NP	1.0	
$\begin{array}{rc\|c} \mathrm{S} \rightarrow \underset{\text { book }}{ } \mid \text { include } & \text { prefer } \\ 0.01 & 0.004 & \mathbf{0 . 0 0 6} \end{array}$		
S \rightarrow Verb NP	0.05	
$\mathbf{S} \rightarrow$ VP PP	0.03	
NP \rightarrow I \| he	she \mid me	
0.10 .020 .020 .06		
NP \rightarrow Houston \| NWA		
0.16 . 04		
$\mathbf{N P} \rightarrow$ Det Nominal	0.6	
Nominal \rightarrow book \| flight	meal	\| money
0.03 0.15 0.06	0.06	
Nominal \rightarrow Nominal Noun	0.2	
Nominal \rightarrow Nominal PP	0.5	
$\mathbf{V P} \rightarrow$ book \| include	prefer	
$0.100 .04 \quad 0.06$		
VP \rightarrow Verb NP	0.5	
VP \rightarrow VP PP	0.3	
PP \rightarrow Prep NP	1.0	

Book the flight through Houston

Probabilistic CKY Parser

Book the flight through Houston

$\begin{array}{\|l} \hline \text { S :.01, VP:.1, } \\ \text { Verb:.5K } \\ \text { Nominal:.03 } \\ \text { Noun:. } 1 \end{array}$	None	$\begin{array}{c\|} \hline \mathrm{S}: .05 * .5 * .054 \\ \hline-.00135 \\ \text { VP:. } 5^{*} * .5 * .054 \\ =.0135 \end{array}$	None	${ }^{\text {S }}$ S: 0000216
	Det: 6	$\frac{\mathrm{NP}: .6 * 6 * .6}{=.054}$	None	$\begin{aligned} & V \\ & V^{V P: .6^{*} .6^{*}} \\ & \begin{array}{c} \mathbf{0 0 2 4} \\ =.000864 \end{array} \end{aligned}$
		Nominal: 154 Noun:. 5	None	Nominal: $.5^{*} .15^{*} .032$ $=.0024$
			Prep:. 2	$\text { PR:1.0*.2*. } 16$ $=.032$
				```V  .. }1 PropNoun:. 8```

Pick most probable parse, i.e. take max to combine probabilities of multiple derivations of each constituent in each cell.

## Unary Rules

## - Unary rules?

```
bestScore(X,i,j,s)
if (j = i+1)
 return tagScore(X,s[i])
else
 return max max score(X->YZ) *
 k,X->YZ bestScore(Y,i,k,s) *
 bestScore(Z,k,j,s)
 max score(X->Y) *
 X->Y bestScore(Y,i,j,s)
```


## CNF + Unary Closure

- We need unaries to be non-cyclic
- Can address by pre-calculating the unary closure
- Rather than having zero or more unaries, always have exactly one

- Alternate unary and binary layers
- Reconstruct unary chains afterwards


## Alternating Layers

bestScoreB(X,i,j,s)

```
return max score(X->YZ) *
 k,X->YZ
 bestScoreU(Y,i,k) *
 bestScoreU(Z,k,j)
```

bestScoreU (X,i,j,s)

```
if (j = i+1)
 return tagScore(X,s[i])
else
```

```
return max score(X->Y) *
```

return max score(X->Y) *
X->Y bestScoreB(Y,i,j)

```
 X->Y bestScoreB(Y,i,j)
```


## Memory

- How much memory does this require?
- Have to store the score cache
- Cache size: |symbols|* ${ }^{2}$ doubles
- For the plain treebank grammar:
- X ~20K, $n=40$, double $\sim 8$ bytes $=\sim 256 \mathrm{MB}$
- Big, but workable.
- Pruning: Beams
- score $[X][i][j]$ can get too large (when?)
- Can keep beams (truncated maps score[i][j]) which only store the best few scores for the span $[i, j]$
- Pruning: Coarse-to-Fine
- Use a smaller grammar to rule out most X[i,j]
- Much more on this later...


## Time: Theory

- How much time will it take to parse?
- For each diff (<= n)
- For each i (<= n)
- For each rule $X \rightarrow Y Z$
- For each split point $k$ Do constant work

- Total time: |rules|* ${ }^{*}{ }^{3}$
- Something like 5 sec for an unoptimized parse of a 20 -word sentences


## Time: Practice

- Parsing with the vanilla treebank grammar:

~ 20K Rules
(not an optimized parser!)

Observed
exponent:
3.6

- Why's it worse in practice?
- Longer sentences "unlock" more of the grammar
- All kinds of systems issues don't scale


## Best Outside Scores

Want to compute the best parse missing a specific word span:

- Tree rooted at Y from words $\mathrm{s}[i: j]$ is left unspecified
- this is the "opposite" of the bestScore / inside score
bestOutside (Y,i,j,s)



## Best Outside Scores

bestOutside (Y,i,j,s)

```
if (i==0 && j==n)
 return 1.0
else
```

return max
max score (X->YZ) *


## Efficient CKY

- Lots of tricks to make CKY efficient
- Most of them are little engineering details:
- E.g., first choose $k$, then enumerate through the $\mathrm{Y}:[\mathrm{i}, \mathrm{k}]$ which are non-zero, then loop through rules by left child.
- Optimal layout of the dynamic program depends on grammar, input, even system details.
- Another kind is more critical:
- Many X:[i,j] can be suppressed on the basis of the input string
- We'll see this next class as figures-of-merit or A* heuristics


## Agenda-Based Parsing

- Agenda-based parsing is like graph search (but over a hypergraph)
- Concepts:
- Numbering: we number fenceposts between words
- "Edges" or items: spans with labels, e.g. PP[3,5], represent the sets of trees over those words rooted at that label (cf. search states)
- A chart: records edges we've expanded (cf. closed set)
- An agenda: a queue which holds edges (cf. a fringe or open set)



## Word Items

- Building an item for the first time is called discovery. Items go into the agenda on discovery.
- To initialize, we discover all word items (with score 1.0).


## AGENDA

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

## CHART [EMPTY]


critics write
reviews
with
computers

## Unary Projection

- When we pop a word item, the lexicon tells us the tag item successors (and scores) which go on the agenda

critics $[0,1]$	write[1,2]	reviews[2,3]	with[3,4]	computers[4,5]
NNS[0,1]	VBP[1,2]	NNS[2,3]	IN[3,4]	NNS $[4,5]$


critics
write
reviews
with
computers

## Item Successors

- When we pop items off of the agenda:
- Graph successors: unary projections (NNS $\rightarrow$ critics, NP $\rightarrow$ NNS)


## $Y[i, j]$ with $X \rightarrow Y$ forms $X[i, j]$

- Hypergraph successors: combine with items already in our chart

$$
Y[i, j] \text { and } Z[j, k] \text { with } X \rightarrow Y Z \text { form } X[i, k]
$$

- Enqueue / promote resulting items (if not in chart already)
- Record backtraces as appropriate
- Stick the popped edge in the chart (closed set)
- Queries a chart must support:
- Is edge $\mathrm{X}:[i, j]$ in the chart? (What score?)
- What edges with label Y end at position j?
- What edges with label $Z$ start at position i?



## An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2] VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOT[0,5] ROOT


## Empty Elements

- Sometimes we want to posit nodes in a parse tree that don't contain any pronounced words:

I want you to parse this sentence
I want [ ] to parse this sentence

- These are easy to add to a chart parser!
- For each position i , add the "word" edge $\varepsilon:[i, i]$
- Add rules like NP $\rightarrow \varepsilon$ to the grammar
- That's it!



## UCS / A*

- With weighted edges, order matters
- Must expand optimal parse from bottom up (subparses first)
- CKY does this by processing smaller spans before larger ones
- UCS pops items off the agenda in order of decreasing Viterbi score
- A* search also well defined
- You can also speed up the search without sacrificing optimality

- Can select which items to process first
- Can do with any "figure of merit" [Charniak 98]
- If your figure-of-merit is a valid $\mathrm{A}^{*}$ heuristic, no loss of optimiality [Klein and Manning 03]


## (Speech) Lattices

- There was nothing magical about words spanning exactly one position.
- When working with speech, we generally don't know how many words there are, or where they break.
- We can represent the possibilities as a lattice and parse these just as easily.



## Treebank Sentences

( (S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)
(PP by
(NP other lenders))
(PP against
(NP Arizona real estate loans)))))

$$
\begin{aligned}
& \text { (S-ADV (NP-SBJ *) } \\
& \text { CVP reflecting } \\
& \text { (NP (NP a cont } \\
& \quad \text { (PP-LOC in }
\end{aligned}
$$

(NP (NP a continuing decline)
(NP that market))))))
.))

## Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.


## Treebank Grammar Scale

- Treebank grammars can be enormous
- As FSAs, the raw grammar has $\sim 10 \mathrm{~K}$ states, excluding the lexicon
- Better parsers usually make the grammars larger, not smaller

NP:


## Typical Experimental Setup

- Corpus: Penn Treebank, WSJ

- Accuracy - F1: harmonic mean of per-node labeled precision and recall.
- Here: also size - number of symbols in grammar.
- Passive / complete symbols: NP, NP^S
- Active / incomplete symbols: NP $\rightarrow$ NP CC•


## Evaluation Metric

- PARSEVAL metrics measure the fraction of the constituents that match between the computed and human parse trees. If $P$ is the system's parse tree and T is the human parse tree (the "gold standard"):
- Recall = (\# correct constituents in P) / (\# constituents in T)
- Precision = (\# correct constituents in P) / (\# constituents in P)
- Labeled Precision and labeled recall require getting the non-terminal label on the constituent node correct to count as correct.
- F1 is the harmonic mean of precision and recall.
- F1= (2 * Precision * Recall) / (Precision + Recall)


## PARSEVAL Example

Correct Tree T

\# Constituents: 11

Computed Tree $\mathbf{P}$

\# Correct Constituents: 10

$$
\text { Recall }=10 / 11=90.9 \% \quad \text { Precision }=10 / 12=83.3 \% \quad F_{1}=87.4 \%
$$

## Treebank PCFGs

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):


Model	F1
Baseline	72.0

## Conditional Independence?



- Not every NP expansion can fill every NP slot
- A grammar with symbols like "NP" won't be context-free
- Statistically, conditional independence too strong


## Non-Independence

- Independence assumptions are often too strong.



NPs under VP


- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!


## Grammar Refinement



- Structure Annotation [Johnson '98, Klein\&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]


## The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation


## Vertical Markovization

- Vertical Markov order: rewrites depend on past $k$ ancestor nodes. (cf. parent annotation)

Order 1

## Order 2




## Horizontal Markovization



## Vertical and Horizontal



Horizontal Order

- Examples:
- Raw treebank: $\quad v=1, h=\infty$
- Johnson 98: $\quad v=2, h=\infty$
- Collins 99: v=2, $h=2$
- Best F1: $\quad v=3, h=2 v$

Model	F1	Size
Base: $v=h=2 \mathrm{v}$	77.8	7.5 K

## Unary Splits

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.
- Solution: Mark
 unary rewrite sites with -U

Annotation	F1	Size
Base	77.8	7.5 K
UNARY	78.3	8.0 K

## Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
- Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0 K
SPLIT-IN	80.3	8.1 K

## Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an $R B^{\wedge} \mathrm{VP}$ )
- SPLIT-AUX: mark auxiliary verbs with -AUX [cf. Charniak 97]
" SPLIT-CC: separate "but" and "\&" from other conjunctions
- SPLIT-\%: "\%" gets its own tag.

F1	Size
80.4	8.1 K
80.5	8.1 K
81.2	8.5 K
81.6	9.0 K
81.7	9.1 K
81.8	9.3 K

## A Fully Annotated (Unlex) Tree



## Some Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	84.7
Collins 96	86.3	85.8	86.0
Unlexicalized	86.9	85.7	86.3
Charniak 97	87.4	87.5	87.4
Collins 99	88.7	88.6	88.6

- Beats "first generation" lexicalized parsers.
- Lots of room to improve - more complex models next.


## The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation [Johnson ' 98, Klein and Manning 03]
- Head lexicalization [Collins ' 99, Charniak ’ 00]


## Problems with PCFGs



- If we do no annotation, these trees differ only in one rule:
- VP $\rightarrow$ VP PP
- NP $\rightarrow$ NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words


## Problems with PCFGs



- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?


## Lexicalized Trees

- Add "headwords" to each phrasal node
- Headship not in (most) treebanks
- Usually use head rules, e.g.:
- NP:
- Take leftmost NP
- Take rightmost $\mathrm{N}^{*}$
- Take rightmost JJ
- Take right child
- VP:
- Take leftmost VB*
- Take leftmost VP
- Take left child

$\Downarrow$


## Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like
VP (saw) -> VBD(saw) NP-C(her) NP (today)
- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps



## Complement / Adjunct Distinction

- *warning* - can be tricky, and most parsers don't model the distinction

- Complement: defines a property/argument (often obligatory), ex: [capitol [of Rome]]
- Adjunct: modifies / describes something (always optional), ex: [quickly ran]
- A Test for Adjuncts: [X Y] --> can claim X and Y
- [they ran and it happened quickly] vs. [capitol and it was of Rome]


## Lexical Derivation Steps

- Main idea: define a linguistically-motivated Markov process for generating children given the parent


Step 1: Choose a head tag and word

Step 2: Choose a complement bag

Step 3: Generate children (incl. adjuncts)

Step 4: Recursively derive children

## Lexicalized CKY



```
bestScore(X,i,j,h)
 if (j = i+1)
 return tagScore(X,s[i])
else
return
```



```
max,h,max score(X[h]->Y[h] Z[h']) *
 X->YZ
 bestScore(Y,i,k,h) *
 bestScore(Z,k,j,h')
 k,hax score(X[h]->Y[h'] Z[h]) *
 X->YZ bestScore(Y,i,k,h) *
 bestScore(Z,k,j,h)
```


## Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
- Essentially, run the $O\left(n^{5}\right)$ CKY
- Remember only a few hypotheses for each span <i,j>.
- If we keep $K$ hypotheses at each span, then we do at most $\mathrm{O}\left(\mathrm{nK}^{2}\right)$ work per span (why?)
- Keeps things more or less cubic

- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)


## The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Parent annotation [Johnson ' 98]
- Head lexicalization [Collins '99, Charniak ’00]
- Automatic clustering?


## Manual Annotation

- Manually split categories
- NP: subject vs object
- DT: determiners vs demonstratives
- IN: sentential vs prepositional
- Advantages:

- Fairly compact grammar
- Linguistic motivations
- Disadvantages:
- Performance leveled ou
- Manually annotated

Model	F1
Naïve Treebank Grammar	72.6
Klein \& Manning '03	86.3
Collins 99	88.6
ne was rtgtl	

## Learning Latent Annotations

Latent Annotations:

- Brackets are known
- Base categories are known
- Hidden variables for subcategories


Can learn with EM: like ForwardBackward for HMMs.


Backward

## Automatic Annotation Induction

- Advantages:
- Automatically learned:

Label all nodes with latent variables.
Same number k of subcategories
 for all categories.

- Disadvantages:
- Grammar gets too large
- Most categories are oversplit while others are undersplit.

Model	F1
Klein \& Manning '03	86.3
Matsuzaki et al. '05	86.7

## Refinement of the DT tag



## Hierarchical refinement

- Repeatedly learn more fine-grained subcategories
- start with two (per non-terminal), then keep splitting
- initialize each EM run with the output of the last



## Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful



## Adaptive Splitting

- Evaluate loss in likelihood from removing each split =

Data likelihood with split reversed
Data likelihood with split

- No loss in accuracy when $50 \%$ of the splits are reversed.



## Adaptive Splitting Results



## Number of Phrasal Subcategories



## Number of Lexical Subcategories



## Final Results

	F1   $\leq 40$ words	F1   all words
Parser	86.3	85.7
Klein \& Manning '03	86.7	86.1
Matsuzaki et al. '05	88.6	88.2
Collins '99	90.1	89.6
Charniak \& Johnson '05	90.2	89.7
Petrov et. al. 06		

## Learned Splits

- Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

- Personal pronouns (PRP):

PRP-0	It	He	I
PRP-1	it	he	they
PRP-2	it	them	him

## Learned Splits

- Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

- Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

## Hierarchical Pruning


split in eight:


## Bracket Posteriors



## 1621 min

 111 min 35 min 15 min (no search error)
## Final Results (Accuracy)

		$\leq 40$ words   F1	all   F1
Z	Charniak\&Johnson ‘05   (generative)	90.1	89.6
	Split / Merge	$\mathbf{9 0 . 6}$	$\mathbf{9 0 . 1}$


口	Dubey '05	76.3	-
罟	Split / Merge	$\mathbf{8 0 . 8}$	$\mathbf{8 0 . 1}$


	Chiang et al. ‘02	80.0	76.6
	Split / Merge	$\mathbf{8 6 . 3}$	$\mathbf{8 3 . 4}$

Still higher numbers from reranking / self-training methods

## Dependency Parsing

- Lexicalized parsers can be seen as producing dependency trees

- Each local binary tree corresponds to an attachment in the dependency graph


## Dependency Parsing

- Pure dependency parsing is only cubic [Eisner 99]

- Some work on non-projective dependencies
- Common in, e.g. Czech parsing
- Can do with MST algorithms [McDonald and Pereira 05]



## Tree-adjoining grammars

- Start with local trees
- Can insert structure with adjunction operators
- Mildly contextsensitive
- Models longdistance dependencies naturally
- ... as well as other weird stuff that CFGs don't capture well (e.g. cross-
 serial dependencies)


## TAG: Long Distance



## CCG Parsing

- Combinatory

Categorial
Grammar

- Fully (mono-) lexicalized grammar
- Categories encode argument sequences
- Very closely related to the lambda calculus (more later)
- Can have spurious ambiguities (why?)


## John $\vdash$ NP

shares $\vdash$ NP
buys $\vdash(\mathrm{S} \backslash \mathrm{NP}) / \mathrm{NP}$
sleeps $\vdash \mathrm{S} \backslash \mathrm{NP}$
well $\vdash(\mathrm{S} \backslash \mathrm{NP}) \backslash(\mathrm{S} \backslash N P)$

buys shares

