
Natural Language Processing
Winter 2013

Luke Zettlemoyer - University of Washington

[Many slides from Dan Klein]

Parts of Speech

Overview

§  POS Tagging

§  Supervised Techniques
§ MEMMs, Structured Perceptron, CRFs

§  Unsupervised
§  EM for HMMs

§  Semi-supervised
§ Co-training

Parts-of-Speech (English)
§  One basic kind of linguistic structure: syntactic word classes

Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Modals

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

IBM
Italy

cat / cats
snow

see
registered

can
had

yellow

slowly

to with

off up

the some

and or

he its

Numbers

122,312
one

CC conjunction, coordinating and both but either or
CD numeral, cardinal mid-1890 nine-thirty 0.5 one
DT determiner a all an every no that the
EX existential there there
FW foreign word gemeinschaft hund ich jeux
IN preposition or conjunction, subordinating among whether out on by if
JJ adjective or numeral, ordinal third ill-mannered regrettable

JJR adjective, comparative braver cheaper taller
JJS adjective, superlative bravest cheapest tallest
MD modal auxiliary can may might will would
NN noun, common, singular or mass cabbage thermostat investment subhumanity

NNP noun, proper, singular Motown Cougar Yvette Liverpool
NNPS noun, proper, plural Americans Materials States
NNS noun, common, plural undergraduates bric-a-brac averages
POS genitive marker ' 's
PRP pronoun, personal hers himself it we them

PRP$ pronoun, possessive her his mine my our ours their thy your
RB adverb occasionally maddeningly adventurously

RBR adverb, comparative further gloomier heavier less-perfectly
RBS adverb, superlative best biggest nearest worst
RP particle aboard away back by on open through
TO "to" as preposition or infinitive marker to
UH interjection huh howdy uh whammo shucks heck
VB verb, base form ask bring fire see take

VBD verb, past tense pleaded swiped registered saw
VBG verb, present participle or gerund stirring focusing approaching erasing
VBN verb, past participle dilapidated imitated reunifed unsettled
VBP verb, present tense, not 3rd person singular twist appear comprise mold postpone
VBZ verb, present tense, 3rd person singular bases reconstructs marks uses
WDT WH-determiner that what whatever which whichever
WP WH-pronoun that what whatever which who whom

WP$ WH-pronoun, possessive whose
WRB Wh-adverb however whenever where why

Part-of-Speech Ambiguity
§  Words can have multiple parts of speech

§  Two basic sources of constraint:

§  Grammatical environment
§  Identity of the current word

§  Many more possible features:
§  Suffixes, capitalization, name databases (gazetteers), etc…

Fed raises interest rates 0.5 percent
NNP NNS NN NNS CD NN
VBN VBZ VBP VBZ
VBD VB

Why POS Tagging?
§  Useful in and of itself (more than you’d think)

§  Text-to-speech: record, lead
§  Lemmatization: saw[v] → see, saw[n] → saw
§  Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}

§  Useful as a pre-processing step for parsing
§  Less tag ambiguity means fewer parses
§  However, some tag choices are better decided by parsers

 DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted …

 DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments …

IN

VDN

Baselines and Upper Bounds
§  Choose the most common tag

§  90.3% with a bad unknown word model
§  93.7% with a good one

§  Noise in the data

§  Many errors in the training and test
corpora

§  Probably about 2% guaranteed error
 from noise (on this data) NN NN NN

chief executive officer

 JJ NN NN
chief executive officer

 JJ JJ NN
chief executive officer

 NN JJ NN
chief executive officer

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%

§  Trigram HMM: ~95% / ~55%

§  TnT (Brants, 2000):
§  A carefully smoothed trigram tagger
§  Suffix trees for emissions
§  96.7% on WSJ text (SOA is ~97.5%)

§  Upper bound: ~98%

Most errors
on unknown

words

Common Errors
§  Common errors [from Toutanova & Manning 00]

 NN/JJ NN

official knowledge

VBD RP/IN DT NN

made up the story

 RB VBD/VBN NNS

recently sold shares

What about better features?
§  Choose the most common tag

§  90.3% with a bad unknown word model
§  93.7% with a good one

§  What about looking at a word and its
environment, but no sequence information?
§  Add in previous / next word the __
§  Previous / next word shapes X __ X
§  Occurrence pattern features [X: x X occurs]
§  Crude entity detection __ ….. (Inc.|Co.)
§  Phrasal verb in sentence? put …… __
§  Conjunctions of these things

§  Uses lots of features: > 200K

s3

x3 x4 x2

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%

§  Q: What does this say about sequence models?
§  Q: How do we add more features to our sequence

models?

§  Upper bound: ~98%

MEMM Taggers
§  One step up: also condition on previous tags

§  Train up p(si|si-1,x1...xm) as a discrete log-linear (maxent) model,

then use to score sequences

§  This is referred to as an MEMM tagger [Ratnaparkhi 96]
§  Beam search effective! (Why?)
§  What’s the advantage of beam size 1?

p(s1 . . . sm|x1 . . . xm) =
m�

i=1

p(si|s1 . . . si−1, x1 . . . xm)

=
m�

i=1

p(si|si−1, x1 . . . xm)

p(si|si−1, x1 . . . xm) =
exp (w · φ(x1 . . . xm, i, si−1, si))�
s� exp (w · φ(x1 . . . xm, i, si−1, s�))

The HMM State Lattice / Trellis
^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

 START Fed raises interest rates STOP

e(Fed|N)

e(raises|V) e(interest|V)

e(rates|J)
q(V|V)

e(STOP|V)

The MEMM State Lattice / Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

 x = START Fed raises interest rates STOP

p(V|V,w)

Decoding
§  Decoding maxent taggers:

§  Just like decoding HMMs
§  Viterbi, beam search, posterior decoding

§  Viterbi algorithm (HMMs):
§  Define π(i,si) to be the max score of a sequence of length i ending in tag si

§  Viterbi algorithm (Maxent):

§  Can use same algorithm for MEMMs, just need to redefine π(i,si) !

π(i, si) = max
si−1

e(xi|si)q(si|si−1)π(i− 1, si−1)

π(i, si) = max
si−1

p(si|si−1, x1 . . . xm)π(i− 1, si−1)

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%
§  MEMM tagger: 96.9% / 86.9%

§  Upper bound: ~98%

Global Discriminative Taggers
§  Newer, higher-powered discriminative sequence models

§  CRFs (also perceptrons, M3Ns)
§  Do not decompose training into independent local regions
§  Can be deathly slow to train – require repeated inference on

training set
§  Differences can vary in importance, depending on task
§  However: one issue worth knowing about in local models

§  “Label bias” and other explaining away effects
§  MEMM taggers’ local scores can be near one without having both

good “transitions” and “emissions”
§  This means that often evidence doesn’t flow properly
§  Why isn’t this a big deal for POS tagging?
§  Also: in decoding, condition on predicted, not gold, histories

Linear Models: Perceptron
§  The perceptron algorithm

§  Iteratively processes the training set, reacting to training errors
§  Can be thought of as trying to drive down training error

§  The (online) perceptron algorithm:
§  Start with zero weights
§  Visit training instances (xi,yi) one by one

§  Make a prediction

§  If correct (y*==yi): no change, goto next example!
§  If wrong: adjust weights

w = w + φ(xi, yi)− φ(xi, y
∗)

y∗ = argmax
y

w · φ(xi, y)
Tag Sequence:
y=s1…sm

Sentence: x=x1…xm

Challenge: How to compute argmax efficiently?

[Collins 02]

Decoding
§  Linear Perceptron

§  Features must be local, for x=x1…xm, and s=s1…sm

§  Define π(i,si) to be the max score of a sequence of length i

ending in tag si

§  Viterbi algorithm (HMMs):

§  Viterbi algorithm (Maxent):

π(i, si) = max
si−1

p(si|si−1, x1 . . . xm)π(i− 1, si−1)

π(i, si) = max
si−1

e(xi|si)q(si|si−1)π(i− 1, si−1)

s∗ = argmax
s

w · Φ(x, s) · θ

π(i, si) = max
si−1

w · φ(x, i, si−i, si) + π(i− 1, si−1)

Φ(x, s) =
m�

j=1

φ(x, j, sj−1, sj)

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%
§  MEMM tagger: 96.9% / 86.9%
§  Perceptron 96.7% / ??

§  Upper bound: ~98%

Conditional Random Fields (CRFs)
§  Maximum entropy (logistic regression)

§  Learning: maximize the (log) conditional likelihood of training
data

§ Computational Challenges?
§  Most likely tag sequence, normalization constant, gradient

p(y|x;w) = exp (w · φ(x, y))�
y� exp (w · φ(x, y�))

{(xi, yi)}ni=1

∂

∂wj
L(w) =

n�

i=1

�
φj(xi, yi)−

�

y

p(y|xi;w)φj(xi, y)

�
− λwj

Sentence: x=x1…xm

Tag Sequence: y=s1…sm

[Lafferty, McCallum, Pereira 01]

Decoding
§  CRFs

§  Features must be local, for x=x1…xm, and s=s1…sm

§  Same as Linear Perceptron!!!

π(i, si) = max
si−1

φ(x, i, si−i, si) + π(i− 1, si−1)

p(s|x;w) = exp (w · Φ(x, s))�
s� exp (w · Φ(x, s�))

s∗ = argmax
s

p(s|x;w)

argmax
s

exp (w · Φ(x, s))�
s� exp (w · Φ(x, s�))= argmax

s
exp (w · Φ(x, s))

= argmax
s

w · Φ(x, s)

Φ(x, s) =
m�

j=1

φ(x, j, sj−1, sj)

CRFs: Computing Normalization

§  Forward Algorithm! Remember HMM case:

§  Could also use backward?

p(s|x;w) = exp (w · Φ(x, s))�
s� exp (w · Φ(x, s�))

�

s�

exp
�
w ·Φ(x, s�)

�

α(i, yi) =
�

yi−1

e(xi|yi)q(yi|yi−1)α(i− 1, yi−1)

=
�

s�

�

j

exp (w · φ(x, j, sj−1, sj))

=
�

s�

exp

�

j

w · φ(x, j, sj−1, sj)

Define norm(i,si) to sum of scores for sequences ending in position i

norm(i, yi) =
�

si−1

exp (w · φ(x, i, si−1, si))norm(i− 1, si−1)

Φ(x, s) =
m�

j=1

φ(x, j, sj−1, sj)

CRFs: Computing Gradient

§  Need forward and backward messages
See notes for full details!

p(s|x;w) = exp (w · Φ(x, s))�
s� exp (w · Φ(x, s�))

∂

∂wj
L(w) =

n�

i=1

�
Φj(xi, si)−

�

s

p(s|xi;w)Φj(xi, s)

�
− λwj

�

s

p(s|xi;w)Φj(xi, s) =
�

s

p(s|xi;w)
m�

j=1

φk(xi, j, sj−1, sj)

=
m�

j=1

�

a,b

�

s:sj−1=a,sb=b

p(s|xi;w)φk(xi, j, sj−1, sj)

Φ(x, s) =
m�

j=1

φ(x, j, sj−1, sj)

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%
§  MEMM tagger: 96.9% / 86.9%
§  Perceptron 96.7% / ??
§  CRF (untuned) 95.7% / 76.2%

§  Upper bound: ~98%

Cyclic Network
§  Train two MEMMs,

multiple together to
score

§  And be very careful
•  Tune regularization
•  Try lots of different

features
•  See paper for full

details

[Toutanova et al 03]

Cyclic Tagging
[Toutanova et al 03]

! Another idea: train a bi-directional MEMM

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

! And be careful
experimentally!
! Try lots of features on

dev. set
! Use L2 regularization
! see paper...

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%
§  MEMM tagger: 96.9% / 86.9%
§  Perceptron 96.7% / ??
§  CRF (untuned) 95.7% / 76.2%
§  Cyclic tagger: 97.2% / 89.0%
§  Upper bound: ~98%

Domain Effects
§  Accuracies degrade outside of domain

§  Up to triple error rate
§  Usually make the most errors on the things you care

about in the domain (e.g. protein names)

§  Open questions
§  How to effectively exploit unlabeled data from a new

domain (what could we gain?)
§  How to best incorporate domain lexica in a principled

way (e.g. UMLS specialist lexicon, ontologies)

Unsupervised Tagging?
§  AKA part-of-speech induction
§  Task:

§ Raw sentences in
§  Tagged sentences out

§  Obvious thing to do:
§  Start with a (mostly) uniform HMM
§ Run EM
§  Inspect results

EM for HMMs: Process
§  Alternate between recomputing distributions over hidden

variables (the tags) and reestimating parameters

§  Crucial step: we want to tally up (fractional) counts

§  We can do this with the forward backward algorithm!!!

qML(yi|yi−1) =
c(yi−1, yi)

c(yi−1)
eML(x|y) =

c(y, x)

c(y)

c∗(y) =
�

j:yj=y

p(x1 . . . xm, yj)

c∗(y, y�) =
�

j:y�=yj ,y=yj−1

p(yj , yj−1|x1 . . . xm)

c∗(y, x) =
�

j:x=xj ,y=yj

p(yj |x1 . . . xm)

Forward, Backward, Again…

§  Sum over all paths, on both sides of each yi

p(x1 . . . xn, yi) = p(xi . . . xi, yi)p(xi+1 . . . xn|yi)

α(i, yi) = p(x1 . . . xi, yi) =
�

y1...yi−1

p(x1 . . . xi, y1 . . . yi)

β(i, yi) = p(xi+1 . . . xn|yi) =
�

yi+1...yn

p(xi+1 . . . xn, yi+1 . . . yn)

=
�

yi+1

e(xi+1|yi+1)q(yi+1|yi)β(i + 1, yi+1)

=
�

yi−1

e(xi|yi)q(yi|yi−1)α(i− 1, yi−1)

EM for HMMs: Process

§  From these quantities, can compute expected transitions:

§  And emissions:

c∗(y, y�) =

�
i α(i, y)t(y

�|y)e(xi|y)β(i+ 1, y�)
p(x1 . . . xm)

c∗(y, x) =

�
j:x=xj

α(i, y)β(i+ 1, y)

p(x1 . . . xm)

Unsupervised Learning Results
§  EM for HMM

§  POS Accuracy: 74.7%

§  Bayesian HMM Learning [Goldwater, Griffiths 07]
§  Significant effort in specifying prior distriubtions
§  Integrate our parameters e(x|y) and t(y’|y)
§  POS Accuracy: 86.8%

§  Unsupervised, feature rich models [Smith, Eisner 05]
§  Challenge: represent p(x,y) as a log-linear model, which requires

normalizing over all possible sentences x
§  Smith presents a very clever approximation, based on local

neighborhoods of x
§  POS Accuracy: 90.1%

§  Newer, feature rich methods do better, not near SOTA

Semi-supervised Learning
§  AKA: boot strapping, self training, etc.
§  Task: learn from two types of data

§  Tagged Sentences
§  Raw / unlabeled sentences

§  Output: a complete POS tagger
§  What should we do?

§  Use labeled data to initialize EM?
§  Sum the counts (real and expected) together?
§  Something fancier?

Merialdo: Setup
§  Some initial results [Merialdo 94]
§  Setup

§  You know the set of possible tags for each word
§  You have k fully labeled training examples

§  Estimate e(x|y) and t(y’|y) on this data

§  Use the supervised model to initialize the EM
algorithms, and run it on all of the data

§  Question: Will this work?

Merialdo: Results Merialdo: Results

Co-Training / Self-Training
§  Simple approach, often (but not always) works…
§  Repeat

§  Learn N independent classifiers on supervised data
§  Use each classifier to tag new, unlabeled data
§  Select subset of unlabeled data (where models agree

and are most confident) and add to labeled data (with
automatically label tags)

§  N=1: Self-training
§  N>1: Co-Training [Blum and Mitchell, 1998]

§  assumed independent features sets, same learner
§  Proved bounds on when this will work well, see paper!

§  for POS, can do different models with the same features

English POS Self/Co-Training
§  Two POS Taggers [Clark, Curran, Osbourne, 2003]

English POS Self-/Co- Training
! Two POS Taggers

! TnT (HMM++) and C&C (MEMM)

[Clark, Curran, Osbourne, 2003]

For the small seed set experiments, the seed data was
an arbitrarily chosen subset of sections 10–19 of the
WSJ Penn Treebank; the unlabelled training data was
taken from 50, 000 sentences of the 1994 WSJ section
of the North American News Corpus (NANC); and the
unlabelled data used to measure agreement was around
10, 000 sentences from sections 1–5 of the Treebank.
Section 00 of the Treebank was used to measure the ac-
curacy of the taggers. The cache size was 500 sentences.

4.1 Self-Training and Agreement-based Co-training
Results

Figure 3 shows the results for self-training, in which each
tagger is simply retrained on its own labelled cache at
each round. (By round we mean the re-training of a sin-
gle tagger, so there are two rounds per co-training itera-
tion.) TNT does improve using self-training, from 81.4%
to 82.2%, but C&C is unaffected. Re-running these ex-
periments using a range of unlabelled training sets, from
a variety of sources, showed similar behaviour.

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0 5 10 15 20 25 30 35 40 45 50

Ac
cu

ra
cy

Number of rounds

TnT
C&C

Figure 3: Self-training TNT and C&C (50 seed sen-
tences). The upper curve is for TNT; the lower curve is
for C&C.

Figure 4 gives the results for the greedy agreement co-
training, using a cache size of 500 and searching through
100 subsets of the labelled cache to find the one that max-
imises agreement. Co-training improves the performance
of both taggers: TNT improves from 81.4% to 84.9%,
and C&C improves from 73.2% to 84.3% (an error re-
duction of over 40%).
Figures 5 and 6 show the self-training results and

agreement-based results when a larger seed set, of 500
sentences, is used for each tagger. In this case, self-
training harms TNT and C&C is again unaffected. Co-
training continues to be beneficial.
Figure 7 shows how the size of the labelled data set (the

number of sentences) grows for each tagger per round.

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0 5 10 15 20 25 30 35 40 45 50

Ac
cu

ra
cy

Number of rounds

TnT
C&C

Figure 4: Agreement-based co-training between
TNT and C&C (50 seed sentences). The curve that
starts at a higher value is for TNT.

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0 5 10 15 20 25 30 35 40 45 50

Ac
cu

ra
cy

Number of rounds

TnT
C&C

Figure 5: Self-training TNT and C&C (500 seed sen-
tences). The upper curve is for TNT; the lower curve is
for C&C.

Towards the end of the co-training run, more material is
being selected for C&C than TNT. The experiments us-
ing a seed set size of 50 showed a similar trend, but the
difference between the two taggers was less marked. By
examining the subsets chosen from the labelled cache at
each round, we also observed that a large proportion of
the cache was being selected for both taggers.

4.2 Naive Co-training Results
Agreement-based co-training for POS taggers is effective
but computationally demanding. The previous two agree-
ment maximisation experiments involved retraining each
tagger 2, 500 times. Given this, and the observation that
maximisation generally has a preference for selecting a
large proportion of the labelled cache, we looked at naive
co-training: simply retraining upon all available mate-

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0 5 10 15 20 25 30 35 40 45 50
Ac

cu
ra

cy

Number of rounds

TnT
C&C

Figure 6: Agreement-based co-training between
TNT and C&C (500 seed sentences). The curve that
starts at a higher value is for TNT.

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

C&C
tnt

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

C&C
TnT

Figure 7: Growth in training-set sizes for co-training
TNT and C&C (500 seed sentences). The upper curve
is for C&C.

rial (i.e. the whole cache) at each round. Table 2 shows
the naive co-training results after 50 rounds of co-training
when varying the size of the cache. 50 manually labelled
sentences were used as the seed material. Table 3 shows
results for the same experiment, but this time with a seed
set of 500 manually labelled sentences.
We see that naive co-training improves as the cache

size increases. For a large cache, the performance lev-
els for naive co-training are very similar to those pro-
duced by our agreement-based co-training method. Af-
ter 50 rounds of co-training using 50 seed sentences,
the agreement rates for naive and agreement-based co-
training were very similar: from an initial value of 73%
to 97% agreement.
Naive co-training is more efficient than agreement-

based co-training. For the parameter settings used in

Amount added TNT C&C
0 81.3 73.2
50 82.9 82.7
100 83.5 83.3
150 84.4 84.3
300 85.0 84.9
500 85.3 85.1

Table 2: Naive co-training accuracy results when varying
the amount added after each round (50 seed sentences)

Amount added TNT C&C
0 91.0 88.3
100 92.0 91.9
300 92.0 91.9
500 92.1 92.0
1000 92.0 91.9

Table 3: Naive co-training accuracy results when varying
the amount added after each round (500 seed sentences)

the previous experiments, agreement-based co-training
required the taggers to be re-trained 10 to 100 times
more often then naive co-training. There are advan-
tages to agreement-based co-training, however. First,
the agreement-based method dynamically selects the best
sample at each stage, which may not be the whole cache.
In particular, when the agreement rate cannot be im-
proved upon, the selected sample can be rejected. For
naive co-training, new samples will always be added,
and so there is a possibility that the noise accumulated
at later stages will start to degrade performance (see
Pierce and Cardie (2001)). Second, for naive co-training,
the optimal amount of data to be added at each round (i.e.
the cache size) is a parameter that needs to be determined
on held out data, whereas the agreement-based method
determines this automatically.

4.3 Larger-Scale Experiments
We also performed a number of experiments using much
more unlabelled training material than before. Instead
of using 50, 000 sentences from the 1994 WSJ section of
the North American News Corpus, we used 417, 000 sen-
tences (from the same section) and ran the experiments
until the unlabelled data had been exhausted.
One experiment used naive co-training, with 50 seed

sentences and a cache of size 500. This led to an agree-
ment rate of 99%, with performance levels of 85.4% and
85.4% for TNT and C&C respectively. 230, 000 sen-
tences (≈ 5 million words) had been processed and were
used as training material by the taggers. The other ex-
periment used our agreement-based co-training approach
(50 seed sentences, cache size of 1, 000 sentences, explor-

Self Training Co-Training
0.92

0.88
A
cc
ur
ac
y

500 seeds 500 seeds

Mandarin POS Self/Co-Training

§  Two POS
Taggers
[Wang, Huang,
Harpaer, 2007]
§  HMM
§  MEMM

§  CTB: Chinese
Penn Tree
Bank

Mandarin Speech POS Self-/Co- Training

! Two POS
Taggers
! HMM
! MEMM

! CTB: Chinese
Penn Treebank

! seed: small
amount of
transribed /
tagged speech
text

[Wang, Huang, Harper, 2007]

the ME tagger, but both taggers are competitive on tagging newswire
text. We examined the output of the two taggers on CTB and found
that they made quite different errors. Hence, we hypothesized that
the two taggers are sufficiently different to allow co-training to pro-
duce reasonable performance. Before conducting co-training or self-
training, we found when using the two taggers trained on the entire
CTB corpus to predict tags on the POS-eval test set, none of them
gave satisfactory performance, as shown in Table 3. After adding
the small seed corpus for training, the accuracy for both taggers was
improved by about 10% absolutely. These results demonstrate the
significant mismatch on style and word use between the newswire
and BN genres and the importance of using a high quality in-domain
seed corpus for semi-supervised training. However, this tagging per-
formance is still unsatisfactory.

Table 4 shows that both self-training and co-training signifi-
cantly improve the performance of the two taggers over directly
training on CTB plus the seed corpus, with co-training strongly out-
performing self-training, even for naive co-training. Note for self-
training and co-training carried out in these experiments, we used
cache size as 10K sentences. Among the four example selection
approaches, the agreement-based approach yields the best accuracy
from resulting taggers. Between agreement-based co-training and
naive co-training, consistent with the findings from Clark et al. [1],
agreement-based co-training is superior to naive co-training, since
at each iteration this approach dynamically selects the examples that
can improve the agreement rate and rejects ones that cannot fulfill
the goal. In contrast, naive co-training adds all new examples in
the cache which might accumulate noise during learning. On the
other hand, the number of iterations of retraining that the agreement-
based approach requires is generally an order of magnitude larger
than that of naive co-training. Interestingly, the max-t-min-s ap-
proach proposed in this work produces comparable performance to
the agreement-based method. Considering this approach is much
more computationally efficient than the agreement-based approach,
it might be promising to explore in other co-training tasks. Also,
Table 4 demonstrates that max-t-min-s approach outperforms max-
score. This shows that although max-t-min-s might let in many ex-
amples with errorful labels, the training utility of these examples for
the student outweights the cost of errors introduced by these exam-
ples into the training data pool of the student. This observation of
importance of training utility is consistent with the finding in active
learning.

By applying co-training, we have achieved 5% to 7% relative
improvement and 4.5% to 6% absolute improvement on POS tag-
ging accuracy onMandarin BN data by employing a quite small seed
corpus of labeled data and a large amount of unlabeled data. Co-
training also reduces the discrepancy between the two taggers and
the best resulting POS tagging accuracy on the Mandarin BN POS
evaluation test set is 94.1%, comparable to the 94.3% POS tagging
accuracy we achieved on the newswire based CTB corpus using the
HMM tagger4. We also found that we never obtained performance
degradation from co-training, regardless of the number of iterations
conducted. This observation is also consistent with the findings from
Clark et al. [1] on the English newswire domain.

In conclusion, we have shown that co-training can be effectively
applied to bootstrap POS taggers for tagging transcribed speech by
combining labeled and unlabeled data. The agreement-based exam-
ple selection approach outperforms naive co-training while a more
computationally efficient approach proposed in this paper, which in-
corporates the idea of maximizing training utility from sample sec-

4We achieved 94.8% POS tagging accuracy when applying co-training
for the two taggers on CTB.

tion, performs comparably to the agreement-based method. In future
work, we will carry out further investigations on example selection
approaches, relations between the size of the manually labeled seed
corpus and performance of different co-training setups, and effective
combination of co-training and active learning. We will also apply
co-training for POS tagging (and parsing) on more difficult genres
like spontaneous speech.

Table 3. Comparison of the tagging accuracy (%) of the HMM tag-
ger and ME tagger when trained on the entire CTB corpus and the
additional Mandarin BN seed corpus and tested on the Mandarin BN
POS-eval test set. Known word, unknown word, and overall accura-
cies are included.

Tagger Known Unknown Overall
HMM CTB 80.0 69.2 79.0

CTB+seed 90.5 75.1 89.6
ME CTB 79.2 66.8 78.5

CTB+seed 89.2 74.0 88.1

Table 4. Overall POS tagging accuracy (%) on the Mandarin BN
POS-eval test set after applying self-training and co-training.

Training Condition Tagger
HMM ME

Initial (i.e., CTB+seed) 89.6 88.1
self-training 90.8 90.2
co-training naive 91.9 91.8

agreement-based 94.1 94.1
max-score 93.2 93.1
max-t-min-s 94.1 93.9

5. ACKNOWLEDGEMENTS

This material is based upon work supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract No. HR0011-06-C-0023.
Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views
of DARPA. The authors thank Heng Ji for her work on manual POS annota-
tion and Kristin Precoda for useful discussions regarding its content.

6. REFERENCES

[1] S. Clark, J. Curran, andM. Osborne, “Bootstrapping POS taggers using unlabelled
data,” in Proceedings of CoNLL, Edmonton, Canada, 2003, pp. 49–55.

[2] M. Mieskes and M. Strube, “Part-of-speech tagging of transcribed speech,” in
Proceedings of LREC, Genoa, Italy, 2006.

[3] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-
training,” in Proceedings of COLT, 1998.

[4] S. Abney, “Bootstrapping,” in Proceedings of ACL, 2002.
[5] D. Pierce and C. Cardie, “Limitations of co-training for natural language learning

from language datasets,” in Proceedings of EMNLP, 2001.
[6] S. Dasgupta, M. Littman, and D. McAllester, “PAC generalization bounds for co-

training,” In T. G. Dietterich and S. Becker and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems,MIT Press, vol. 14, pp. 375–382, 2002.

[7] R. Hwa, “Sample selection for statistical grammar induction,” in Proceedings
of Joing SIGDAT Conference on EMNLP and VLC, Hongkong, China, 2000, pp.
45–52.

[8] K. Nigram and R. Ghani, “Analyzing the effectiveness and applicability of co-
training,” in Proceedings of CIKM, 2000.

[9] S. M. Thede and M. P. Harper, “A second-order Hidden Markov Model for part-
of-speech tagging,” in Proceedings of ACL, 1999, pp. 175–182.

[10] A. Ratnaparkhi, “A maximum entropy model for part-of-speech tagging,” Pro-
ceedings of the Conference on Empirical Methods in Natural Language Process-
ing, pp. 133–142, 1996.

[11] M.-Y. Hwang, X. Lei, W. Wang, and T. Shinozaki, “Investigation on mandarin
broadcast news speech recognition,” in Proceedings of ICSLP, Pittsburgh, 2006,
pp. 1233–1236.

the ME tagger, but both taggers are competitive on tagging newswire
text. We examined the output of the two taggers on CTB and found
that they made quite different errors. Hence, we hypothesized that
the two taggers are sufficiently different to allow co-training to pro-
duce reasonable performance. Before conducting co-training or self-
training, we found when using the two taggers trained on the entire
CTB corpus to predict tags on the POS-eval test set, none of them
gave satisfactory performance, as shown in Table 3. After adding
the small seed corpus for training, the accuracy for both taggers was
improved by about 10% absolutely. These results demonstrate the
significant mismatch on style and word use between the newswire
and BN genres and the importance of using a high quality in-domain
seed corpus for semi-supervised training. However, this tagging per-
formance is still unsatisfactory.

Table 4 shows that both self-training and co-training signifi-
cantly improve the performance of the two taggers over directly
training on CTB plus the seed corpus, with co-training strongly out-
performing self-training, even for naive co-training. Note for self-
training and co-training carried out in these experiments, we used
cache size as 10K sentences. Among the four example selection
approaches, the agreement-based approach yields the best accuracy
from resulting taggers. Between agreement-based co-training and
naive co-training, consistent with the findings from Clark et al. [1],
agreement-based co-training is superior to naive co-training, since
at each iteration this approach dynamically selects the examples that
can improve the agreement rate and rejects ones that cannot fulfill
the goal. In contrast, naive co-training adds all new examples in
the cache which might accumulate noise during learning. On the
other hand, the number of iterations of retraining that the agreement-
based approach requires is generally an order of magnitude larger
than that of naive co-training. Interestingly, the max-t-min-s ap-
proach proposed in this work produces comparable performance to
the agreement-based method. Considering this approach is much
more computationally efficient than the agreement-based approach,
it might be promising to explore in other co-training tasks. Also,
Table 4 demonstrates that max-t-min-s approach outperforms max-
score. This shows that although max-t-min-s might let in many ex-
amples with errorful labels, the training utility of these examples for
the student outweights the cost of errors introduced by these exam-
ples into the training data pool of the student. This observation of
importance of training utility is consistent with the finding in active
learning.

By applying co-training, we have achieved 5% to 7% relative
improvement and 4.5% to 6% absolute improvement on POS tag-
ging accuracy onMandarin BN data by employing a quite small seed
corpus of labeled data and a large amount of unlabeled data. Co-
training also reduces the discrepancy between the two taggers and
the best resulting POS tagging accuracy on the Mandarin BN POS
evaluation test set is 94.1%, comparable to the 94.3% POS tagging
accuracy we achieved on the newswire based CTB corpus using the
HMM tagger4. We also found that we never obtained performance
degradation from co-training, regardless of the number of iterations
conducted. This observation is also consistent with the findings from
Clark et al. [1] on the English newswire domain.

In conclusion, we have shown that co-training can be effectively
applied to bootstrap POS taggers for tagging transcribed speech by
combining labeled and unlabeled data. The agreement-based exam-
ple selection approach outperforms naive co-training while a more
computationally efficient approach proposed in this paper, which in-
corporates the idea of maximizing training utility from sample sec-

4We achieved 94.8% POS tagging accuracy when applying co-training
for the two taggers on CTB.

tion, performs comparably to the agreement-based method. In future
work, we will carry out further investigations on example selection
approaches, relations between the size of the manually labeled seed
corpus and performance of different co-training setups, and effective
combination of co-training and active learning. We will also apply
co-training for POS tagging (and parsing) on more difficult genres
like spontaneous speech.

Table 3. Comparison of the tagging accuracy (%) of the HMM tag-
ger and ME tagger when trained on the entire CTB corpus and the
additional Mandarin BN seed corpus and tested on the Mandarin BN
POS-eval test set. Known word, unknown word, and overall accura-
cies are included.

Tagger Known Unknown Overall
HMM CTB 80.0 69.2 79.0

CTB+seed 90.5 75.1 89.6
ME CTB 79.2 66.8 78.5

CTB+seed 89.2 74.0 88.1

Table 4. Overall POS tagging accuracy (%) on the Mandarin BN
POS-eval test set after applying self-training and co-training.

Training Condition Tagger
HMM ME

Initial (i.e., CTB+seed) 89.6 88.1
self-training 90.8 90.2
co-training naive 91.9 91.8

agreement-based 94.1 94.1
max-score 93.2 93.1
max-t-min-s 94.1 93.9

5. ACKNOWLEDGEMENTS

This material is based upon work supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract No. HR0011-06-C-0023.
Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views
of DARPA. The authors thank Heng Ji for her work on manual POS annota-
tion and Kristin Precoda for useful discussions regarding its content.

6. REFERENCES

[1] S. Clark, J. Curran, andM. Osborne, “Bootstrapping POS taggers using unlabelled
data,” in Proceedings of CoNLL, Edmonton, Canada, 2003, pp. 49–55.

[2] M. Mieskes and M. Strube, “Part-of-speech tagging of transcribed speech,” in
Proceedings of LREC, Genoa, Italy, 2006.

[3] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-
training,” in Proceedings of COLT, 1998.

[4] S. Abney, “Bootstrapping,” in Proceedings of ACL, 2002.
[5] D. Pierce and C. Cardie, “Limitations of co-training for natural language learning

from language datasets,” in Proceedings of EMNLP, 2001.
[6] S. Dasgupta, M. Littman, and D. McAllester, “PAC generalization bounds for co-

training,” In T. G. Dietterich and S. Becker and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems,MIT Press, vol. 14, pp. 375–382, 2002.

[7] R. Hwa, “Sample selection for statistical grammar induction,” in Proceedings
of Joing SIGDAT Conference on EMNLP and VLC, Hongkong, China, 2000, pp.
45–52.

[8] K. Nigram and R. Ghani, “Analyzing the effectiveness and applicability of co-
training,” in Proceedings of CIKM, 2000.

[9] S. M. Thede and M. P. Harper, “A second-order Hidden Markov Model for part-
of-speech tagging,” in Proceedings of ACL, 1999, pp. 175–182.

[10] A. Ratnaparkhi, “A maximum entropy model for part-of-speech tagging,” Pro-
ceedings of the Conference on Empirical Methods in Natural Language Process-
ing, pp. 133–142, 1996.

[11] M.-Y. Hwang, X. Lei, W. Wang, and T. Shinozaki, “Investigation on mandarin
broadcast news speech recognition,” in Proceedings of ICSLP, Pittsburgh, 2006,
pp. 1233–1236.

