Natural Language Processing Winter 2013

Parts of Speech

Luke Zettlemoyer - University of Washington

[Many slides from Dan Klein]

Overview

- POS Tagging
- Supervised Techniques
 - MEMMs, Structured Perceptron, CRFs
- Unsupervised
 - EM for HMMs
- Semi-supervised
 - Co-training

Parts-of-Speech (English)

• One basic kind of linguistic structure: syntactic word classes

CC	conjunction, coordinating	and both but either or
CD	numeral, cardinal	mid-1890 nine-thirty 0.5 one
DT	determiner	a all an every no that the
EX	existential there	there
FW	foreign word	gemeinschaft hund ich jeux
IN	preposition or conjunction, subordinating	among whether out on by if
JJ	adjective or numeral, ordinal	third ill-mannered regrettable
JJR	adjective, comparative	braver cheaper taller
JJS	adjective, superlative	bravest cheapest tallest
MD	modal auxiliary	can may might will would
NN	noun, common, singular or mass	cabbage thermostat investment subhumanity
NNP	noun, proper, singular	Motown Cougar Yvette Liverpool
NNPS	noun, proper, plural	Americans Materials States
NNS	noun, common, plural	undergraduates bric-a-brac averages
POS	genitive marker	''s
PRP	pronoun, personal	hers himself it we them
PRP\$	pronoun, possessive	her his mine my our ours their thy your
RB	adverb	occasionally maddeningly adventurously
RBR	adverb, comparative	further gloomier heavier less-perfectly
RBS	adverb, superlative	best biggest nearest worst
RP	particle	aboard away back by on open through
то	"to" as preposition or infinitive marker	to
UH	interjection	huh howdy uh whammo shucks heck
VB	verb, base form	ask bring fire see take
VBD	verb, past tense	pleaded swiped registered saw
VBG	verb, present participle or gerund	stirring focusing approaching erasing
VBN	verb, past participle	dilapidated imitated reunifed unsettled
VBP	verb, present tense, not 3rd person singular	twist appear comprise mold postpone
VBZ	verb, present tense, 3rd person singular	bases reconstructs marks uses
WDT	WH-determiner	that what whatever which whichever
WP	WH-pronoun	that what whatever which who whom
WP\$	WH-pronoun, possessive	whose
WRB	Wh-adverb	however whenever where why

Part-of-Speech Ambiguity

Words can have multiple parts of speech

VBD		VB			
VBN	VBZ	VBP	VBZ		
NNP	NNS	NN	NNS	CD	NN
Fed	raises	interest	rates	0.5	percent

Mrs./NNP Shaefer/NNP never/RB got/VBD **around/RP** to/TO joining/VBG All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB **around/IN** the/DT corner/NN Chateau/NNP Petrus/NNP costs/VBZ **around/RB** 250/CD

• Two basic sources of constraint:

- Grammatical environment
- Identity of the current word
- Many more possible features:
 - Suffixes, capitalization, name databases (gazetteers), etc...

Why POS Tagging?

- Useful in and of itself (more than you'd think)
 - Text-to-speech: record, lead
 - Lemmatization: saw[v] → see, saw[n] → saw
 - Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}
- Useful as a pre-processing step for parsing
 - Less tag ambiguity means fewer parses
 - However, some tag choices are better decided by parsers

IN

DT NNP NN VBD VBN RP NN NNS The Georgia branch had taken on loan commitments ...

VDN

DT NN IN NN VBD NNS VBD The average of interbank offered rates plummeted ...

Baselines and Upper Bounds

Choose the most common tag

- 90.3% with a bad unknown word model
- 93.7% with a good one

Noise in the data

- Many errors in the training and test corpora
- Probably about 2% guaranteed error from noise (on this data)

JJ JJ NN chief executive officer JJ NN NN chief executive officer NN NN chief executive officer NN NN NN chief executive officer

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag: ~90% / ~50%
 - Trigram HMM:

- TnT (Brants, 2000):
 - A carefully smoothed trigram tagger
 - Suffix trees for emissions
 - 96.7% on WSJ text (SOA is ~97.5%)

Most errors on unknown words

Upper bound: ~98%

Common Errors

Common errors [from Toutanova & Manning 00]

														_
		JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total	1
	JJ	0	177	56	0	61	2	5	10	15	108	0	488	
	NN	244	0	103	0	12	1	1	29	5	6	19	525	1
	NNP	107	106	0	132	5	0	7	5	1	2	0	427	
	NNPS	1	0	110	0	0	0	0	0	0	0	0	142	
	RB	72	21	7	0	0	16	138	1	0	0	0	295	
	RP	0	0	0	0	39	0	65	0	0	0	0	104	
	IN	11	0	1	0	169	103	0	1	0	0	0	323	
	VB	17	64	9	0	2	0	1	0	4	7	85	189	
	VBD	10	5	3	0	Q	0	0	3	0	143	2	166	
	VBN	101	3	3	0	0	0	0	3	108	Q	1	221	
	VBP	5	34	3	1	1	0	2	49	6	3	0	104	
	Total	626	536	348	144	317	122	279	102	140	269	108	3651	
N٨	1/JJ	NN			VBD	RP/	N D	ΓNN			RB	VBD/	VBN I	NNS
offi	official knowledge			mad	e up	the	stor	ý	r	ecentl	y sol	d sh	ares	

What about better features?

- Choose the most common tag
 - 90.3% with a bad unknown word model
 - 93.7% with a good one
 - What about looking at a word and its environment, but no sequence information?
 - Add in previous / next word
 - Previous / next word shapes
 - Occurrence pattern features
 - Crude entity detection
 - Phrasal verb in sentence?
 - Conjunctions of these things

Uses lots of features: > 200K

the ____ X ___ X [X: x X occurs] ___ (Inc.|Co.) put

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):

- ~90% / ~50%
- ~95% / ~55%
- 96.2% / 86.0%
 - 96.8% / 86.8%
- Q: What does this say about sequence models?
- Q: How do we add more features to our sequence models?
- Upper bound: ~98%

MEMM Taggers

One step up: also condition on previous tags

$$p(s_1 \dots s_m | x_1 \dots x_m) = \prod_{i=1}^m p(s_i | s_1 \dots s_{i-1}, x_1 \dots x_m)$$
$$= \prod_{i=1}^m p(s_i | s_{i-1}, x_1 \dots x_m)$$

 Train up p(s_i|s_{i-1},x₁...x_m) as a discrete log-linear (maxent) model, then use to score sequences

$$p(s_i|s_{i-1}, x_1 \dots x_m) = \frac{\exp\left(w \cdot \phi(x_1 \dots x_m, i, s_{i-1}, s_i)\right)}{\sum_{s'} \exp\left(w \cdot \phi(x_1 \dots x_m, i, s_{i-1}, s')\right)}$$

- This is referred to as an MEMM tagger [Ratnaparkhi 96]
- Beam search effective! (Why?)
- What's the advantage of beam size 1?

The HMM State Lattice / Trellis

The MEMM State Lattice / Trellis

Decoding

- Decoding maxent taggers:
 - Just like decoding HMMs
 - Viterbi, beam search, posterior decoding
- Viterbi algorithm (HMMs):
 - Define $\pi(i,s_i)$ to be the max score of a sequence of length i ending in tag s_i $\pi(i,s_i) = \max_{s_{i-1}} e(x_i|s_i)q(s_i|s_{i-1})\pi(i-1,s_{i-1})$
- Viterbi algorithm (Maxent):
 - Can use same algorithm for MEMMs, just need to redefine π(i,s_i) !

$$\pi(i, s_i) = \max_{s_{i-1}} p(s_i | s_{i-1}, x_1 \dots x_m) \pi(i-1, s_{i-1})$$

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):
 - MEMM tagger:

- ~90% / ~50%
 - ~95% / ~55%
- 96.2% / 86.0%
- 96.8% / 86.8%
- 96.9% / 86.9%

Upper bound: ~98%

Global Discriminative Taggers

- Newer, higher-powered discriminative sequence models
 - CRFs (also perceptrons, M3Ns)
 - Do not decompose training into independent local regions
 - Can be deathly slow to train require repeated inference on training set
- Differences can vary in importance, depending on task
- However: one issue worth knowing about in local models
 - "Label bias" and other explaining away effects
 - MEMM taggers' local scores can be near one without having both good "transitions" and "emissions"
 - This means that often evidence doesn't flow properly
 - Why isn't this a big deal for POS tagging?
 - Also: in decoding, condition on predicted, not gold, histories

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors

Sentence: $x=x_1...x_m$

Tag Sequence:

y=s₁...s_m

- Can be thought of as trying to drive down training error
- The (online) perceptron algorithm:
 - Start with zero weights
 - Visit training instances (x_i,y_i) one by one
 - Make a prediction

$$y^* = \arg\max_y w \cdot \phi(x_i, y)$$

- If correct (y*==y_i): no change, goto next example!
- If wrong: adjust weights

$$w = w + \phi(x_i, y_i) - \phi(x_i, y^*)$$

Challenge: How to compute argmax efficiently?

Decoding

- Linear Perceptron $s^* = \arg \max_s w \cdot \Phi(x, s) \cdot \theta$
 - Features must be local, for x=x₁...x_m, and s=s₁...s_m

$$\Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$

Define π(i,s_i) to be the max score of a sequence of length i ending in tag s_i

$$\pi(i, s_i) = \max_{s_{i-1}} w \cdot \phi(x, i, s_{i-i}, s_i) + \pi(i - 1, s_{i-1})$$

- Viterbi algorithm (HMMs): $\pi(i, s_i) = \max_{s_{i-1}} e(x_i | s_i) q(s_i | s_{i-1}) \pi(i-1, s_{i-1})$
- Viterbi algorithm (Maxent): $\pi(i, s_i) = \max_{s_{i-1}} p(s_i | s_{i-1}, x_1 \dots x_m) \pi(i-1, s_{i-1})$

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):
 - MEMM tagger:
 - Perceptron

- ~90% / ~50%
 - ~95% / ~55%
- 96.2% / 86.0%
- 96.8% / 86.8%
- 96.9% / 86.9%
- 96.7% / ??

Upper bound: ~98%

Conditional Random Fields (CRFs)

[Lafferty, McCallum, Pereira 01]

Maximum entropy (logistic regression)

Sentence:
$$x=x_1...x_m$$

 $p(y|x;w) = \frac{\exp(w \cdot \phi(x,y))}{\sum_{y'} \exp(w \cdot \phi(x,y'))}$
Tag Sequence: $y=s_1...s_m$

- Learning: maximize the (log) conditional likelihood of training data $\{(x_i, y_i)\}_{i=1}^n$

$$\frac{\partial}{\partial w_j} L(w) = \sum_{i=1}^n \left(\phi_j(x_i, y_i) - \sum_y p(y|x_i; w) \phi_j(x_i, y) \right) - \lambda w_j$$

- Computational Challenges?
 - Most likely tag sequence, normalization constant, gradient

- CRFs Decoding $s^* = \arg \max_s p(s|x;w)$

Features must be local, for x=x₁...x_m, and s=s₁...s_m

$$p(s|x;w) = \frac{\exp\left(w \cdot \Phi(x,s)\right)}{\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right)} \quad \Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$

$$\arg\max_{s} \frac{\exp\left(w \cdot \Phi(x,s)\right)}{\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right)} = \arg\max_{s} \exp\left(w \cdot \Phi(x,s)\right)$$

$$= \arg\max_{s} w \cdot \Phi(x,s)$$

Same as Linear Perceptron!!!

$$\pi(i, s_i) = \max_{s_{i-1}} \phi(x, i, s_{i-i}, s_i) + \pi(i - 1, s_{i-1})$$

CRFs: Computing Normalization

$$p(s|x;w) = \frac{\exp\left(w \cdot \Phi(x,s)\right)}{\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right)} \quad \Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$
$$\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right) = \sum_{s'} \exp\left(\sum_{j} w \cdot \phi(x,j,s_{j-1},s_j)\right)$$
$$= \sum_{s'} \prod_{j} \exp\left(w \cdot \phi(x,j,s_{j-1},s_j)\right)$$

Define norm(i,s_i) to sum of scores for sequences ending in position i

$$norm(i, y_i) = \sum_{s_{i-1}} \exp(w \cdot \phi(x, i, s_{i-1}, s_i)) norm(i-1, s_{i-1})$$

Forward Algorithm! Remember HMM case:

$$\alpha(i, y_i) = \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i-1, y_{i-1})$$

Could also use backward?

CRFs: Computing Gradient

$$p(s|x;w) = \frac{\exp\left(w \cdot \Phi(x,s)\right)}{\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right)} \quad \Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$
$$\frac{\partial}{\partial w_j} L(w) = \sum_{i=1}^{n} \left(\Phi_j(x_i,s_i) - \sum_s p(s|x_i;w)\Phi_j(x_i,s)\right) - \lambda w_j$$

$$\sum_{s} p(s|x_{i};w) \Phi_{j}(x_{i},s) = \sum_{s} p(s|x_{i};w) \sum_{j=1}^{m} \phi_{k}(x_{i},j,s_{j-1},s_{j})$$
$$= \sum_{j=1}^{m} \sum_{a,b} \sum_{s:s_{j-1}=a,s_{b}=b} p(s|x_{i};w) \phi_{k}(x_{i},j,s_{j-1},s_{j})$$

Need forward and backward messages

See notes for full details!

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):
 - MEMM tagger:
 - Perceptron
 - CRF (untuned)

- ~90% / ~50%
- ~95% / ~55%
- 96.2% / 86.0%
- 96.8% / 86.8%
- 96.9% / 86.9%
- 96.7% / ??
- 95.7% / 76.2%
- Upper bound:

~98%

Cyclic Network [Toutand

 t_2

 w_2

 t_1

 w_1

[Toutanova et al 03]

 t_n

 w_n

- Train two MEMMs, multiple together to score
- And be very careful
 - Tune regularization
 - Try lots of different features
 - See paper for full details

(a) Left-to-Right CMM

 w_3

 t_3

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):
 - MEMM tagger:
 - Perceptron
 - CRF (untuned)
 - Cyclic tagger:
 - Upper bound:

~90% / ~50% ~95% / ~55% 96.2% / 86.0% 96.8% / 86.8% 96.9% / 86.9% 96.7% / ?? 95.7% / 76.2% 97.2% / 89.0% ~98%

Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)
- Open questions
 - How to effectively exploit unlabeled data from a new domain (what could we gain?)
 - How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

EM for HMMs: Process

 Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters

$$q_{ML}(y_i|y_{i-1}) = \frac{c(y_{i-1}, y_i)}{c(y_{i-1})} \qquad e_{ML}(x|y) = \frac{c(y, x)}{c(y)}$$

Crucial step: we want to tally up (fractional) counts

$$c^{*}(y) = \sum_{j:y_{j}=y} p(x_{1} \dots x_{m}, y_{j}) \qquad c^{*}(y, x) = \sum_{j:x=x_{j}, y=y_{j}} p(y_{j}|x_{1} \dots x_{m})$$

$$c^*(y,y') = \sum_{j:y'=y_j, y=y_{j-1}} p(y_j, y_{j-1}|x_1 \dots x_m)$$

We can do this with the forward backward algorithm!!!

Forward, Backward, Again...

$$p(x_1 \dots x_n, y_i) = p(x_i \dots x_i, y_i) p(x_{i+1} \dots x_n | y_i)$$

Sum over all paths, on both sides of each y_i

$$\alpha(i, y_i) = p(x_1 \dots x_i, y_i) = \sum_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$
$$= \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i-1, y_{i-1})$$

$$\beta(i, y_i) = p(x_{i+1} \dots x_n | y_i) = \sum_{y_{i+1} \dots y_n} p(x_{i+1} \dots x_n, y_{i+1} \dots y_n)$$

$$= \sum_{y_{i+1}} e(x_{i+1}|y_{i+1})q(y_{i+1}|y_i)\beta(i+1,y_{i+1})$$

EM for HMMs: Process

From these quantities, can compute expected transitions:

$$c^*(y,y') = \frac{\sum_i \alpha(i,y) t(y'|y) e(x_i|y) \beta(i+1,y')}{p(x_1 \dots x_m)}$$

• And emissions:

$$c^*(y,x) = \frac{\sum_{j:x=x_j} \alpha(i,y)\beta(i+1,y)}{p(x_1\dots x_m)}$$

Unsupervised Learning Results

EM for HMM

- POS Accuracy: 74.7%
- Bayesian HMM Learning [Goldwater, Griffiths 07]
 - Significant effort in specifying prior distributions
 - Integrate our parameters e(x|y) and t(y'|y)
 - POS Accuracy: 86.8%
- Unsupervised, feature rich models [Smith, Eisner 05]
 - Challenge: represent p(x,y) as a log-linear model, which requires normalizing over all possible sentences x
 - Smith presents a very clever approximation, based on local neighborhoods of x
 - POS Accuracy: 90.1%
- Newer, feature rich methods do better, not near SOTA

Semi-supervised Learning

- AKA: boot strapping, self training, etc.
- Task: learn from two types of data
 - Tagged Sentences
 - Raw / unlabeled sentences
- Output: a complete POS tagger
- What should we do?
 - Use labeled data to initialize EM?
 - Sum the counts (real and expected) together?
 - Something fancier?

Merialdo: Setup

- Some initial results [Merialdo 94]
- Setup
 - You know the set of possible tags for each word
 - You have k fully labeled training examples
 - Estimate e(x|y) and t(y'|y) on this data
 - Use the supervised model to initialize the EM algorithms, and run it on all of the data
- Question: Will this work?

Merialdo: Results

Number of tagged sentences used for the initial model								
	0	100	2000	5000	10000	20000	all	
Iter	Co	rrect tag	gs (% w	ords) af	fter ML c	on 1M wo	ords	
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0	
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8	
2	81.8	93.0	95.7	96.1	96.3	96.4	96.4	
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2	
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0	
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8	
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7	
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5	
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4	
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3	
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2	

.

Co-Training / Self-Training

- Simple approach, often (but not always) works...
- Repeat
 - Learn N independent classifiers on supervised data
 - Use each classifier to tag new, unlabeled data
 - Select subset of unlabeled data (where models agree and are most confident) and add to labeled data (with automatically label tags)
- N=1: Self-training
- N>1: Co-Training [Blum and Mitchell, 1998]
 - assumed independent features sets, same learner
 - Proved bounds on when this will work well, see paper!
 - for POS, can do different models with the same features

English POS Self-/Co- Training English POS Self/Co-Training

Two POS Taggers [Clark, Curran, Osbourne, 2003]

Figure 5: Self-training TNT and C&C (500 seed sentences). The upper curve is for TNT; the lower curve is for C&C. 500 seeds

Figure 6: Agreement-based co-training between TNT and C&C (500 seed sentences). The curve that starts at a higher value is for TNT. 500 seeds

Mandarin Speech POS Self-/Co-Training Mandarin POS Self/Co-Training

Table 3. Comparison of the tagging accuracy (%) of the HMM tagger and ME tagger when trained on the entire CTB corpus and the additional Mandarin BN seed corpus and tested on the Mandarin BN POS-eval test set. Known word, unknown word, and overall accuracies are included.

Т	agger	Known	Unknown	Overall	
HMM CTB		80.0	69.2	79.0	
	CTB+seed	90.5	75.1	89.6	
ME	СТВ	79.2	66.8	78.5	
	CTB+seed	89.2	74.0	88.1	

Table 4. Overall POS tagging accuracy (%) on the Mandarin BN POS-eval test set after applying self-training and co-training.

Training Cor	Tagger		
	HMM	ME	
Initial (i.e., C	89.6	88.1	
self-training	90.8	90.2	
co-training	naive	91.9	91.8
	agreement-based	94.1	94.1
max-score		93.2	93.1
	94.1	93.9	

Taggers POS Fivingers Wang, Huang, Harpaer, 2007] CTB:HOlvinese

Two POS

PennMEncencebank

seed Bsroalhese amount offee trakerilsed / tagged speech text