# Natural Language Processing Winter 2013 

## Hidden Markov Models

Luke Zettlemoyer - University of Washington

[Many slides from Dan Klein and Michael Collins]

## Overview

- Hidden Markov Models
- Learning
- Supervised: Maximum Likelihood
- Inference (or Decoding)
- Viterbi
- Forward Backward
- N-gram Taggers


## Pairs of Sequences

- Consider the problem of jointly modeling a pair of strings
- E.g.: part of speech tagging


## DT NNP NN VBD VBN RP NN NNS

The Georgia branch had taken on loan commitments ...

## DT NN IN NN VBD NNS VBD

The average of interbank offered rates plummeted ...

- Q: How do we map each word in the input sentence onto the appropriate label?
- A: We can learn a joint distribution:

$$
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)
$$

- And then compute the most likely assignment:

$$
\arg \max _{y_{1} \ldots y_{n}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)
$$

## Classic Solution: HMMs

- We want a model of sequences $y$ and observations $x$

where $\mathrm{y}_{0}=S T A R T$ and we call $\mathrm{q}\left(\mathrm{y}^{\prime} \mid \mathrm{y}\right)$ the transition distribution and $\mathrm{e}(\mathrm{x} \mid \mathrm{y})$ the emission (or observation) distribution.
- Assumptions:
- Tag/state sequence is generated by a markov model
- Words are chosen independently, conditioned only on the tag/state
- These are totally broken assumptions: why?


## Example: POS Tagging

The Georgia branch had taken on loan commitments ...


DT NNP NN VBD VBN RP NN NNS

- HMM Model:
- States $Y=\{D T, N N P, N N, \ldots\}$ are the POS tags
- Observations $\mathrm{X}=\mathrm{V}$ are words
- Transition dist' $\mathrm{n} \mathrm{q}\left(\mathrm{y}_{\mathrm{i}} \mid \mathrm{y}_{\mathrm{i}-1}\right)$ models the tag sequences
- Emission dist' $n$ e $\left(x_{i} \mid y_{i}\right)$ models words given their POS
- Q: How to we represent n-gram POS taggers?


## Example: Chunking

- Goal: Segment text into spans with certain properties
- For example, named entities: PER, ORG, and LOC

Germany 's representative to the European Union 's veterinary committee Werner Zwingman said on Wednesday consumers should...

[Germany]_oc 's representative to the [European Union] $]_{\text {org }}$ 's veterinary committee [Werner Zwingman] ${ }_{\text {PER }}$ said on Wednesday consumers should...

- Q: Is this a tagging problem?


## Example: Chunking

[Germany] $]_{\text {Loc }}$ 's representative to the [European Union] $]_{\mathrm{ORG}}$ 's veterinary committee [Werner Zwingman] ${ }_{\text {PER }}$ said on Wednesday consumers should...


Germany/BL 's/NA representative/NA to/NA the/NA European/BO Union/CO 's/NA veterinary/NA committee/NA Werner/BP Zwingman/CP said/NA on/NA Wednesday/NA consumers/NA should/NA...

- HMM Model:
- States $Y=\{N A, B L, C L, B O, C O, B P, C P\}$ represent beginnings ( $\mathrm{BL}, \mathrm{BO}, \mathrm{BP}$ ) and continuations (CL,CO,CP) of chunks, as well as other words (NA)
- Observations $\mathrm{X}=\mathrm{V}$ are words
- Transition dist' $\mathrm{n} \mathrm{q}\left(\mathrm{y}_{\mathrm{i}} \mid \mathrm{y}_{\mathrm{i}-1}\right)$ models the tag sequences
- Emission dist' $n$ e( $\left.x_{i} \mid y_{i}\right)$ models words given their type


## Example: HMM Translation Model



F: Gracias, lo haré de muy buen grado.

## Model Parameters

Emissions: $e\left(F_{1}=\right.$ Gracias $\mid E_{A_{1}}=$ Thank $) \quad$ Transitions: $p\left(A_{2}=3 \mid A_{1}=1\right)$

## HMM Inference and Learning

- Learning
- Maximum likelihood: transitions q and emissions e

$$
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)=q\left(S T O P \mid y_{n}\right) \prod_{i=1}^{n} q\left(y_{i} \mid y_{i-1}\right) e\left(x_{i} \mid y_{i}\right)
$$

- Inference (linear time in sentence length!)
- Viterbi:

$$
y^{*}=\arg \max _{y_{1} \ldots y_{n}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)
$$

- Forward Backward:

$$
p\left(x_{1} \ldots x_{n}, y_{i}\right)=\sum_{y_{1} \ldots y_{i-1}} \sum_{y_{i+1} \ldots y_{n}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)
$$

## Learning: Maximum Likelihood

$$
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)=q\left(S T O P \mid y_{n}\right) \prod_{i=1}^{n} q\left(y_{i} \mid y_{i-1}\right) e\left(x_{i} \mid y_{i}\right)
$$

- Learning
- Maximum likelihood methods for estimating transitions q and emissions e

$$
q_{M L}\left(y_{i} \mid y_{i-1}\right)=\frac{c\left(y_{i-1}, y_{i}\right)}{c\left(y_{i-1}\right)} \quad e_{M L}(x \mid y)=\frac{c(y, x)}{c(y)}
$$

- Will these estimates be high quality?
- Which is likely to be more sparse, q or e?
- Can use all of the same smoothing tricks we saw for language models!


## Learning: Low Frequency Words

$p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)=q\left(S T O P \mid y_{n}\right) \prod_{i=1}^{n} q\left(y_{i} \mid y_{i-1}\right) e\left(x_{i} \mid y_{i}\right)$

- Typically, linear interpolation works well for transitions

$$
q\left(y_{i} \mid y_{i-1}\right)=\lambda_{1} q_{M L}\left(y_{i} \mid y_{i-1}\right)+\lambda_{2} q_{M L}\left(y_{i}\right)
$$

- However, other approaches used for emissions
- Step 1: Split the vocabulary
- Frequent words: appear more than M (often 5) times
- Low frequency: everything else
- Step 2: Map each low frequency word to one of a small, finite set of possibilities
- For example, based on prefixes, suffixes, etc.
- Step 3: Learn model for this new space of possible word sequences


## Low Frequency Words: An Example

## Named Entity Recognition [Bickel et. al, 1999]

- Used the following word classes for infrequent words:

| Word class | Example | Intuition |
| :--- | :--- | :--- |
|  |  |  |
| twoDigitNum | 90 | Two digit year |
| fourDigitNum | 1990 | Four digit year |
| containsDigitAndAlpha | A8956-67 | Product code |
| containsDigitAndDash | $09-96$ | Date |
| containsDigitAndSlash | $11 / 9 / 89$ | Date |
| containsDigitAndComma | $23,000.00$ | Monetary amount |
| containsDigitAndPeriod | 1.00 | Monetary amount,percentage |
| othernum | 456789 | Other number |
| allCaps | BBN | Organization |
| capPeriod | M. | Person name initial |
| firstWord | first word of sentence | no useful capitalization information |
| initCap | Sally | Capitalized word |
| lowercase | can | Uncapitalized word |
| other | , | Punctuation marks, all other words |

## Low Frequency Words: An Example

- Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

- firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA

```
NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
```


## Inference (Decoding)

- Problem: find the most likely (Viterbi) sequence under the model

$$
\arg \max _{y_{1} \ldots y_{n}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)
$$

- Given model parameters, we can score any sequence pair
NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent. $q(N N P \mid *) e(F e d \mid N N P) q(V B Z \mid N N P) e($ raises $\mid V B Z) q(N N \mid V B Z) \ldots$.

- In principle, we' re done - list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

NNP VBZ NN NNS CD NN $\Rightarrow$ logP $=-23$
NNP NNS NN NNS CD NN $\Rightarrow$ logP $=-29$
NNP VBZ VB NNS CD NN $\Rightarrow \log P=-27$

## Finding the Best Trajectory

- Too many trajectories (state sequences) to list
- Option 1: Beam Search

- A beam is a set of partial hypotheses
- Start with just the single empty trajectory
- At each derivation step:
- Consider all continuations of previous hypotheses
- Discard most, keep top k
- Beam search works ok in practice
- ... but sometimes you want the optimal answer
- ... and there' s usually a better option than naïve beams


## The State Lattice / Trellis



## Dynamic Programming!

$$
\arg \max _{y_{1} \ldots y_{n}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)
$$

- Define $\pi\left(i, y_{i}\right)$ to be the max score of a sequence of length i ending in tag $y_{i}$

$$
\begin{aligned}
\pi\left(i, y_{i}\right) & =\max _{y_{1} \ldots y_{i-1}} p\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{i}\right) \\
& =\max _{y_{i-1}} e\left(x_{i} \mid y_{i}\right) q\left(y_{i} \mid y_{i-1}\right) \max _{y_{1} \ldots y_{i-2}} p\left(x_{1} \ldots x_{i-1}, y_{1} \ldots y_{i-1}\right) \\
& =\max _{y_{i-1}} e\left(x_{i} \mid y_{i}\right) q\left(y_{i} \mid y_{i-1}\right) \pi\left(i-1, y_{i-1}\right)
\end{aligned}
$$

- We now have an efficient algorithm. Start with $\mathrm{i}=0$ and work your way to the end of the sentence!


## The Viterbi Algorithm

- Dynamic program for computing (for all i)

$$
\pi\left(i, y_{i}\right)=\max _{y_{1} \ldots y_{i-1}} p\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{i}\right)
$$

- Iterative computation

$$
\pi\left(0, y_{0}\right)=\left\{\begin{array}{l}
1 \text { if } y_{0}==S T A R T \\
0 \text { otherwise }
\end{array}\right.
$$

For $\mathrm{i}=1 \ldots \mathrm{n}$ :

$$
\pi\left(i, y_{i}\right)=\max _{y_{i-1}} e\left(x_{i} \mid y_{i}\right) q\left(y_{i} \mid y_{i-1}\right) \pi\left(i-1, y_{i-1}\right)
$$

- Also, store back pointers

$$
b p\left(i, y_{i}\right)=\arg \max _{y_{i-1}} e\left(x_{i} \mid y_{i}\right) q\left(y_{i} \mid y_{i-1}\right) \pi\left(i-1, y_{i-1}\right)
$$

## The Viterbi Algorithm: Runtime

- Linear in sentence length $n$
- Polynomial in the number of possible tags $|\mathrm{K}|$

$$
\pi\left(i, y_{i}\right)=\max _{y_{i-1}} e\left(x_{i} \mid y_{i}\right) q\left(y_{i} \mid y_{i-1}\right) \pi\left(i-1, y_{i-1}\right)
$$

- Specifically:
$O(n|\mathcal{K}|)$ entries in $\pi\left(i, y_{i}\right)$
$O(|\mathcal{K}|)$ time to compute each $\pi\left(i, y_{i}\right)$
- Total runtime: $O\left(n|\mathcal{K}|^{2}\right)$
- Q: Is this a practical algorithm?
- A: depends on $|K| \ldots$.


## Marginal Inference

- Problem: find the marginal probability of each tag for $y_{i}$

$$
p\left(x_{1} \ldots x_{n}, y_{i}\right)=\sum_{y_{1} \ldots y_{i-1}} \sum_{y_{i+1} \ldots y_{n}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)
$$

- Given model parameters, we can score any sequence pair
NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent.
$q(N N P \mid *) e(F e d \mid N N P) q(V B Z \mid N N P) e($ raises $\mid V B Z) q(N N \mid V B Z) \ldots$.

- In principle, we' re done - list all possible tag sequences, score each one, sum over all of the possible values for $y_{i}$

NNP VBZ NN NNS CD NN $\Rightarrow$ logP $=-23$
NNP NNS NN NNS CD NN $\Rightarrow$ logP $=-29$
NNP VBZ VB NNS CD NN $\Rightarrow \log P=-27$

## The State Lattice / Trellis



## Dynamic Programming!

$$
p\left(x_{1} \ldots x_{n}, y_{i}\right)=p\left(x_{i} \ldots x_{i}, y_{i}\right) p\left(x_{i+1} \ldots x_{n} \mid y_{i}\right)
$$

- Sum over all paths, on both sides of each $y_{i}$

$$
\begin{aligned}
\alpha\left(i, y_{i}\right) & =p\left(x_{1} \ldots x_{i}, y_{i}\right)=\sum_{y_{1} \ldots y_{i-1}} p\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{i}\right) \\
& =\sum_{y_{i-1}} e\left(x_{i} \mid y_{i}\right) q\left(y_{i} \mid y_{i-1}\right) \alpha\left(i-1, y_{i-1}\right) \\
\beta\left(i, y_{i}\right) & =p\left(x_{i+1} \ldots x_{n} \mid y_{i}\right)=\sum_{y_{i+1} \ldots y_{n}} p\left(x_{i+1} \ldots x_{n}, y_{i+1} \ldots y_{n}\right) \\
& =\sum_{y_{i+1}} e\left(x_{i+1} \mid y_{i+1}\right) q\left(y_{i+1} \mid y_{i}\right) \beta\left(i+1, y_{i+1}\right)
\end{aligned}
$$

## Forward Backward Algorithm

- Two passes: one forward, one back
- Forward:

$$
\alpha\left(0, y_{0}\right)=\left\{\begin{array}{l}
1 \text { if } y_{0}==S T A R T \\
0 \text { otherwise }
\end{array}\right.
$$

- For $\mathrm{i}=1$... n

$$
\alpha\left(i, y_{i}\right)=\sum_{y_{i-1}} e\left(x_{i} \mid y_{i}\right) q\left(y_{i} \mid y_{i-1}\right) \alpha\left(i-1, y_{i-1}\right)
$$

- Backward:

$$
\beta\left(n, y_{n}\right)=\left\{\begin{array}{l}
1 \text { if } y_{n}==S T O P \\
0 \text { otherwise }
\end{array}\right.
$$

- For $\mathrm{i}=\mathrm{n}-1$... 1

$$
\beta\left(i, y_{i}\right)=\sum_{y_{i+1}} e\left(x_{i+1} \mid y_{i+1}\right) q\left(y_{i+1} \mid y_{i}\right) \beta\left(i+1, y_{i+1}\right)
$$

## Forward Backward: Runtime

- Linear in sentence length $n$
- Polynomial in the number of possible tags $|\mathrm{K}|$

$$
\begin{aligned}
\alpha\left(i, y_{i}\right) & =\sum_{y_{i-1}} e\left(x_{i} \mid y_{i}\right) q\left(y_{i} \mid y_{i-1}\right) \alpha\left(i-1, y_{i-1}\right) \\
\beta\left(i, y_{i}\right) & =\sum_{y_{i+1}} e\left(x_{i+1} \mid y_{i+1}\right) q\left(y_{i+1} \mid y_{i}\right) \beta\left(i+1, y_{i+1}\right)
\end{aligned}
$$

- Specifically:

$$
\begin{gathered}
O(n|\mathcal{K}|) \text { entries in } \alpha\left(i, y_{i}\right) \text { and } \beta\left(i, y_{i}\right) \\
O(|\mathcal{K}|) \text { time to compute each entry }
\end{gathered}
$$

- Total runtime:

$$
O\left(n|\mathcal{K}|^{2}\right)
$$

- Q: How does this compare to Viterbi?
- A: Exactly the same!!! (actually $x 2$, a constant factor...)


## What about n-gram Taggers?

- States encode what is relevant about the past
- Transitions P(s|s') encode well-formed tag sequences
- In a bigram tagger, states = tags

- In a trigram tagger, states = tag pairs



## The State Lattice / Trellis



