
CSE 517, Fall 2013: Assignment 3

Due: Saturday, Feb 23th at 5pm

In this assignment, you will build an English treebank parser. You will consider both the problem of
learning a grammar from a treebank and the problem of parsing with that grammar. The data and support
code are available on the course Dropbox in Catalyst. Please submit two files: a PDF (with your name)
containing your writeup and an archive (zip, tar.gz, etc.) including all the code.

The data is taken from the Penn Treebank and includes sentences paired with complete parses. The
provided support code is in Java and we highly encourage, but do not require, you to use it. In either case,
the code submitted must provide detailed documentation.

The starting class for this assignment is

edu.berkeley.nlp.assignments.PCFGParserTester

1 Building a Parser (50%)

In this project, you will build a broad-coverage parser. You may either build an agenda-driven PCFG parser,
or an array-based CKY parser. We will first go over the data flow, then describe the support classes that
are provided. You are free to use these classes, or not, as you see fit.

Currently, files 200 to 2199 of the Treebank are read in as training data, as is standard for this data set.
Depending on whether you run with -validate or -test, either files 2200 to 2299 are read in (validation),
or 2300 to 2399 are read in (test). You can look in the data directory if you’re curious about the native
format of these files, but all I/O is taken care of by the provided code. You can always run on fewer training
or test files to speed up your preliminary experiments, especially while debugging (where you might first
want to train and test on the same, single file, or even just a single tree). Be sure to only use the test set
once for each model (twice, if you absolutely need it) and use the validation set for development.

Once the trees are read, the code constructs a BaselineParser, which implements the Parser interface
(with only one method: getBestParse()). The parser is then used to predict trees for the sentences in
the test set. You can control the maximum length of training and testing sentences with the parameters
-maxTrainLength and -maxTestLength. The standard setup is to train on sentences of all lengths and test
on sentences of length less than or equal to 40 words. Your final parser should work on sentences of at
least length 20 in a reasonable time (5 seconds per 20-word sentence should be achievable without too much
optimization; a good research parser will parse a 20 word sentence in more like 0.1 seconds).

This baseline parser is quite terrible - it takes a sentence, tags each word with its most likely tag (i.e.
runs a unigram tagger), then looks for that exact tag sequence in the training set. If it finds an exact match,
it answers with a known parse for that tag sequence. If no match is found, it constructs a right-branching
tree, with nodes labels chosen independently, conditioned only on the length of the span of a node. This
baseline is just a crazy placeholder - youre going to provide a better solution.

You should familiarize yourself with these basic classes:

Tree CFG tree structures, (pretty-print with Trees.PennTreeRenderer)
UnaryRule/BinaryRule/Grammar CFG rules and accessors

1



You will be using these classes no matter what kind of parser you build. If you choose to build an agenda-
based parser, you will find util.GeneralPriorityQueue useful. If you choose to build an array-based CKY
parser, you will instead find the UnaryClosure class (also in the harness file) useful. It computes the reflex-
ive, transitive closure of the unary subset of a grammar, and also maps closure rules to their best backing
paths.

We have also provided a basic lexicon (Lexicon) to associate words with part-of-speech tags. This lexicon
is minimal, but handles rare and unknown words adequately for the present purposes (see the javadoc for
details). If you want to employ your tagger from Assignment 2 instead of using this lexicon, that is perfectly
acceptable.

At this point, you should manually scan through a few of the training trees to get a sense of the format
and range of inputs. Something youll notice is that the grammar has relatively few non-terminal symbols
(27 plus part-of-speech tags) but thousands of rules, many trinary-branching or longer. As we discussed in
class, most parsers (including yours) require grammars in which the rules are at most binary branching. You
can binarize and unbinarize trees using the TreeAnnotations class. The default implementation binarizes
the trees in a way that doesnt generalize the n-ary grammar at all (convince yourself of this). You should
run some trees through the binarization process and look at the results to get an idea of whats going on.
If you annotate/binarize the training trees, you should be able to construct a Grammar out of them, using
the constructor provided. This grammar is composed of binary and unary rules, each bearing its relative
frequency estimated probability from the training trees you provide on construction. It therefore encodes a
PCFG, and your main goal is to build a parser which parses novel sentences using that PCFG. Building this
parser will be the bulk of the work for this assignment.

2 Better Grammar (50%)

Once you have a parser which, given a test sentence, returns a parse of that sentence using the training gram-
mar, you will focus on improving performance by modifying the grammar using better annotation/refinement
techniques. For example, you may use horizontal and vertical markovization to improve the accuracy of your
parser. The current representation is equivalent to a 1st-order vertical process with an infinite-order horizon-
tal process. You should at least try out a 2nd-order / 2nd-order grammar, meaning using parent annotation
(symbols like NP^S instead of NP) and forgetful binarization (symbols like @VP->...NP PP which abstract
the horizontal history, instead of @VP-> VBD RB NP PP which record the entire history). In addition, you are
required to explore further annotation methods. A good submission will cover all the tag splitting options
we discussed in class and provide detailed evaluation of each method’s contribution (for example, using
ablation tests). More ideas for tag splitting can be found in Klein and Manning (2003). Alternatively, you
may choose to lexicalize your grammar (see Michael Collins’ notes on the course website). A good and
reasoned approach to lexicalization will receive a bonus of 30%.

3 Writeup (max. 4 pages)

For the write-up, we want you to describe what you’ve built and analyze your results. Describe your grammar
annotation / refinement pipeline and ablate the various steps to evaluate their contribution. Ablation tests
should be done using the validation (development) set. Summarize your results in a table and discuss them.
Back your annotation / refinement choices with reasoned explanations. Just claiming that they provide
better performance is not enough, we want to see that you understand how your improvements relate to the
actual problem. You should also report at least some errors (with examples) that your parser seems to make
often. Try to discuss potential improvements that might overcome these errors. Finally, report your final
evaluation results using (1) the initial grammar, (2) the 2nd-order / 2nd-order grammar and (3) the final
grammar refinement you chose to use. All your results should be reported using the parser your built.

2



Coding Tips

Whenever you run the java VM, you should invoke it with as much memory as you need (and in server mode
for JVMs which dont default to sever):

java -server -mx500m package.ClassName

If your parser is running very slowly, run the VM with the -Xprof command line option. This will result in a
flat profile being output after your process completes. If you see that your program is spending a lot of time
in hash map operations or hashcode / equals methods, you might be able to speed up your computation
substantially by backing your sets, maps, and counters with IdentityHashMaps instead of HashMaps. This
change requires the use of something like a util.Interner for canonicalization.

The assignment was adapted from Dan Klein’s CS 288 Course at UC Berkeley.

References

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics - Volume 1, ACL ’03, pages 423–430, Stroudsburg,
PA, USA. Association for Computational Linguistics.

3


