VARIABLE ELIMINATION

Inference

- \diamondsuit Exact inference
 - Enumeration
 - Variable elimination
 - Junction trees and belief propagation
- \diamondsuit Approximate inference
 - Loopy belief propagation
 - Sampling methods: likelihood weighting, Markov chain Monte Carlo
 - Variational approximation

Inference tasks

Simple queries: compute posterior marginal $\mathbf{P}(X_i | \mathbf{E} = \mathbf{e})$ e.g., P(NoGas | Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: $\mathbf{P}(X_i, X_j | \mathbf{E} = \mathbf{e}) = \mathbf{P}(X_i | \mathbf{E} = \mathbf{e})\mathbf{P}(X_j | X_i, \mathbf{E} = \mathbf{e})$

Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

 $\begin{aligned} \mathbf{P}(B|j,m) \\ &= \mathbf{P}(B,j,m) / P(j,m) \\ &= \alpha \mathbf{P}(B,j,m) \\ &= \alpha \sum_{e} \sum_{a} \mathbf{P}(B,e,a,j,m) \end{aligned}$

Rewrite full joint entries using product of CPT entries:
$$\begin{split} \mathbf{P}(B|j,m) &= \alpha \ \Sigma_e \ \Sigma_a \ \mathbf{P}(B) P(e) \mathbf{P}(a|B,e) P(j|a) P(m|a) \\ &= \alpha \mathbf{P}(B) \ \Sigma_e \ P(e) \ \Sigma_a \ \mathbf{P}(a|B,e) P(j|a) P(m|a) \end{split}$$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Enumeration algorithm

```
function ENUMERATION-ASK(X, e, bn) returns a distribution over X
   inputs: X, the query variable
              e. observed values for variables E
              bn, a Bayesian network with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y}
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
        extend e with value x_i for X
         \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(\text{VARS}[bn], \mathbf{e})
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   Y \leftarrow \text{FIRST}(vars)
   if Y has value y in e
        then return P(y \mid Pa(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e)
        else return \Sigma_y P(y \mid Pa(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e_y)
              where \mathbf{e}_y is \mathbf{e} extended with Y = y
```


Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

$$\begin{aligned} \mathbf{P}(B|j,m) &= \alpha \underbrace{\mathbf{P}(B)}_{B} \underbrace{\sum_{e} \underbrace{P(e)}_{E} \sum_{a} \underbrace{\mathbf{P}(a|B,e)}_{A} \underbrace{P(j|a)}_{J} \underbrace{P(m|a)}_{M}}_{J} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{E} \sum_{a} \mathbf{P}(a|B,e) P(j|a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{a} \sum_{a} \mathbf{P}(a|B,e) f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{a} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{J} f_{M}(b,e) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{e}$$

Variable elimination: Basic operations

Summing out a variable from a product of factors: move any constant factors outside the summation add up submatrices in pointwise product of remaining factors

 $\Sigma_x f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \Sigma_x f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{X}}$

assuming f_1, \ldots, f_i do not depend on X

Pointwise product of factors f_1 and f_2 : $f_1(x_1, ..., x_j, y_1, ..., y_k) \times f_2(y_1, ..., y_k, z_1, ..., z_l)$ $= f(x_1, ..., x_j, y_1, ..., y_k, z_1, ..., z_l)$ E.g., $f_1(a, b) \times f_2(b, c) = f(a, b, c)$

Variable elimination algorithm

```
function ELIMINATION-ASK(X, e, bn) returns a distribution over X

inputs: X, the query variable

e, evidence specified as an event

bn, a belief network specifying joint distribution \mathbf{P}(X_1, \ldots, X_n)

factors \leftarrow []; vars \leftarrow REVERSE(VARS[bn])

for each var in vars do

factors \leftarrow [MAKE-FACTOR(var, e)|factors]

if var is a hidden variable then factors \leftarrow SUM-OUT(var, factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))
```

Irrelevant variables

Consider the query P(JohnCalls|Burglary=true)

 $P(J|b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(J|a) \sum_{m} P(m|a)$

Sum over m is identically 1; M is **irrelevant** to the query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathbf{E})$

Here, X = JohnCalls, $\mathbf{E} = \{Burglary\}$, and $Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$ so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by \mathbf{E}

For P(JohnCalls|Alarm = true), both Burglary and Earthquake are irrelevant

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:

- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to **counting** 3SAT models \Rightarrow #P-complete

