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Motivation

“Standard” distributions (e.g., multivariate Gaussian)
are too limited

How do we represent and learn more complex ones?
One answer: Mixtures of “standard” distributions
In the limit, can approximate any distribution this way

Also good (and widely used) as a clustering method



Mixture Models

Objective function: Log likelihood of data

Naive Bayes: P(z|c;) =[], P(zjlc;)

AutoClass: Naive Bayes with various x; models
Mixture of Gaussians: P(x|c;) = Multivariate Gaussian

In general: P(x|c;) can be any distribution
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Mixtures of Gaussians




The EM Algorithm

Initialize parameters ignoring missing information

Repeat until convergence:

E step: Compute expected values of unobserved variables,
assuming current parameter values

M step: Compute new parameter values to maximize
probability of data (observed & estimated)

(Also: Initialize expected values ignoring missing info)



EM for Mixtures of Gaussians

Initialization: Choose means at random, etc.

E step: For all examples x:
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Why EM Works
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Onew = argmax Fy  |log P(X)]
0



Other Instances of EM

e Learning Hidden Markov models

e Learning graphical models with missing data



EM Variants

MAP: Compute MAP estimates instead of ML in M step
GEM: Just increase likelihood in M step

SEM /MCEM: Approximate E step

Simulated annealing: Avoid local maxima

Early stopping: Faster, may reduce overfitting
Structural EM: EM with structure search
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