Mixture Models and The EM Algorithm

Preview

- Mixture models
- The EM algorithm
- Why EM works
- EM variants

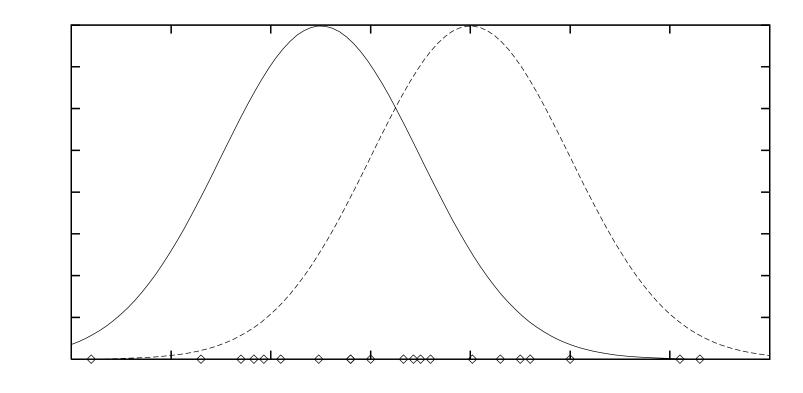
Motivation

- "Standard" distributions (e.g., multivariate Gaussian) are too limited
- How do we represent and learn more complex ones?
- One answer: Mixtures of "standard" distributions
- In the limit, can approximate any distribution this way
- Also good (and widely used) as a clustering method

Mixture Models

$$P(x) = \sum_{i=1}^{n_c} P(c_i)P(x|c_i)$$

Objective function: Log likelihood of data


Naive Bayes: $P(x|c_i) = \prod_{j=1}^{n_d} P(x_j|c_i)$

AutoClass: Naive Bayes with various x_j models

Mixture of Gaussians: $P(x|c_i) = \text{Multivariate Gaussian}$

In general: $P(x|c_i)$ can be any distribution

Mixtures of Gaussians

$$P(x|\mu_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{x - \mu_i}{\sigma}\right)^2\right]$$

The EM Algorithm

Initialize parameters ignoring missing information

Repeat until convergence:

E step: Compute expected values of unobserved variables, assuming current parameter values

M step: Compute new parameter values to maximize probability of data (observed & estimated)

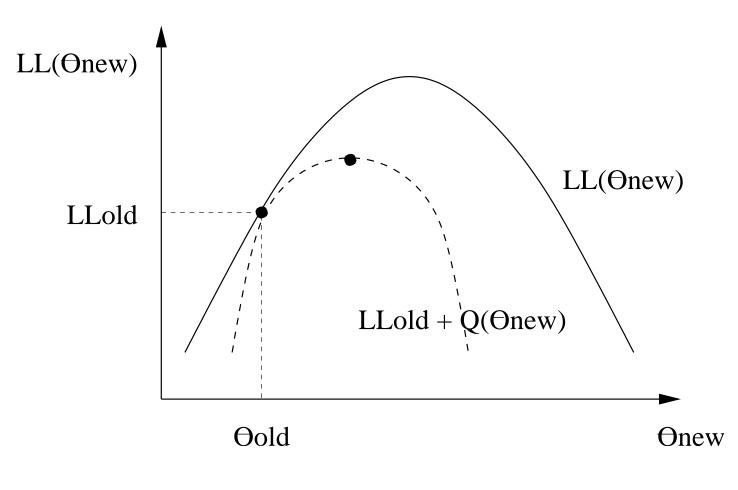
(Also: Initialize expected values ignoring missing info)

EM for Mixtures of Gaussians

Initialization: Choose means at random, etc.

E step: For all examples x_k :

$$P(\mu_i|x_k) = \frac{P(\mu_i)P(x_k|\mu_i)}{P(x_k)} = \frac{P(\mu_i)P(x_k|\mu_i)}{\sum_{i'} P(\mu_{i'})P(x_k|\mu_{i'})}$$


M step: For all components c_i :

$$P(c_i) = \frac{1}{n_e} \sum_{k=1}^{n_e} P(\mu_i | x_k)$$

$$\mu_i = \frac{\sum_{k=1}^{n_e} x_k P(\mu_i | x_k)}{\sum_{k=1}^{n_e} P(\mu_i | x_k)}$$

$$\sigma_i^2 = \frac{\sum_{k=1}^{n_e} (x_k - \mu_i)^2 P(\mu_i | x_k)}{\sum_{k=1}^{n_e} P(\mu_i | x_k)}$$

Why EM Works

$$\theta_{new} = \underset{\theta}{\operatorname{argmax}} E_{\theta_{old}}[\log P(X)]$$

Other Instances of EM

- Learning Hidden Markov models
- Learning graphical models with missing data

EM Variants

MAP: Compute MAP estimates instead of ML in M step

GEM: Just increase likelihood in M step

SEM/MCEM: Approximate E step

Simulated annealing: Avoid local maxima

Early stopping: Faster, may reduce overfitting

Structural EM: EM with structure search

Summary

- The EM algorithm
- Mixture models
- Why EM works
- EM variants