
CSE515: Statistical Methods in Computer Science Winter, 2016

Homework 4
Due at noon on March 9, 2016

GUIDELINES: You can brainstorm with others, but please solve the problems and write up
the answers by yourself. You may use textbooks (Koller & Friedman, Russel & Norvig, etc.),
lecture notes, and standard programming references (e.g., online Java API documentation).
Please do NOT use any other resources or references (e.g., example code, online problem
solutions, etc.) without asking.

SUBMISSION INSTRUCTIONS: Submit this assignment by Dropbox. You submission should
include: A PDF containing written answers and all your code.

1 LEARNING BAYESIAN NETWORK (25 POINTS)

Consider learning the following Bayesian network: A → B ←C . And the following data table,
with entries ‘?1’ and ‘?2’ missing at random:

A B C
?1 T T
F T F
F F F
T F T
T F T
T T T
F F T
F T T
F T T
T ?2 F
T T F
T F F

(a) Use the data to estimate initial parameters for this network, using maximum likelihood
estimation for simplicity

(b) Perform two iterations of the EM algorithm (by hand) to estimate the values of the
missing data, reestimate the parameters, reestimate the values of the missing data, and
reestimate the parameters once more. Show your calculations.
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Figure 2.1: Partial search tree example for orderings over variables X1, X2, X3, X4. Successors
to ≺= (1,2,3,4) and ≺′= (2,1,3,4) shown.

2 LEARNING STRUCTURE OF BAYESIAN NETWORK (25 POINTS)

Consider learning the structure of a Bayesian network for some given ordering, ≺, of the vari-
ables X1, . . . , Xn . (This can be done efficiently as described in section 18.5.2.1 of the textbook.)
Now assume that we want to perform a search over the space of orderings; that is, we are
searching for a network (with bounded in-degree k) that has the highest score. We do this by
defining the score of an ordering as the score of the (bounded in-degree) network with the
maximum score consistent with that ordering, and then we search for the ordering with the
highest score. We bound the in-degree so that we have a smaller and smoother search space.
We will define our search operator, o, to be “Swap Xi and Xi+1” for some i = 1, . . . ,n−1. Start-
ing from some given ordering, ≺, we evaluate a decomposable structure score of all successor
orderings, ≺′ , where a successor ordering is found by applying o to ≺ (see Figure 2.1). We now
choose a particular successor, ≺′ . Provide an algorithm for computing as efficiently as possi-
ble the score for all successors of the new ordering, ≺′ , given that we have already computed
the scores for all successors of ≺. Note: A structure score score (G : D) is decomposable if the
score of a structure G can be written as

scor e(G : D) =∑
i

F amScor e(Xi |PaG
Xi

: D),

where the family score F amScor e(X |U : D) is a score measuring how well a set of variables U
serves as parents of X in the data set D .

3 GIBBS SAMPLING (15 POINTS)

Consider the Bayesian network A → B , where A and B are Boolean variables, P (A = 1) =
1/2, and P (B = 1|A = 1) = P (B = 0|A = 0) = 1. Will Gibbs sampling applied to this network
converge to the correct stationary distribution? Why?
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Figure 5.1: An example RBM with 5 visible units and 2 hidden units.

4 PARTICLE FILTER (15 POINTS)

At each resampling step, particle filtering usually creates multiple copies of the highest-weight
samples. Why does this not result in the number of different samples dwindling over time?

5 LEARNING RESTRICTED BOLTZMANN MACHINES (20 POINTS)

Restricted Boltzmann Machines (RBMs) are a class of Markov networks that have been used
in several applications, including image feature extraction, collaborative filtering, and re-
cently in deep belief networks. An RBM is a bipartite Markov network consisting of a visible
(observed) layer and a hidden layer, where each node is a binary random variable. One way
to look at an RBM is that it models latent factors that can be learned from input features. For
example, suppose we have samples of binary user ratings (like vs. dislike) on 5 movies: Find-
ing Nemo (V1), Avatar (V2), Star Trek (V3), Aladdin (V4), and Frozen (V5). We can construct the
following RBM:
Here, the bottom layer consists of visible nodes V1, . . . ,V5 that are random variables repre-
senting the binary ratings for the 5 movies, and H1, H2 are two hidden units that represent
latent factors to be learned during training (e.g., H1 might be associated with Disney movies,
and H2 could represent the adventure genre). If we are using an RBM for image feature ex-
traction, the visible layer could instead denote binary values associated with each pixel, and
the hidden layer would represent the latent features. However, for this problem we will stick
with the movie example. In the following questions, let V = (V1, . . . ,V5) be a vector of ratings
(e.g. the observation v = (1,0,0,0,1) implies that a user likes only Finding Nemo and Aladdin).
Similarly, let H = (H1, H2) be a vector of latent factors. Note that all the random variables are
binary and take on states in {0,1}. The joint distribution of a configuration is given by

P (V = v, H = h) = 1

Z
e−E(v,h), (5.1)

where
E(v,h) =−∑

i j
wi j vi h j −

∑
i

ai vi −
∑

j
b j h j (5.2)
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is the energy function, {wi j }, {ai }, {b j } are model parameters, and

Z = Z ({wi j }, {ai }, {b j }) =∑
v,h

e−E(v,h)

is the partition function, where the summation runs over all joint assignments to V and H .

(e) We can use the log-likelihood of the visible units, log p(V = v), as the criterion to learn
the model parameters {wi j }, {ai }, {b j }. However, this maximization problem has no
closed form solution. One popular technique for training this model is called “con-
trastive divergence” and uses an approximate gradient descent method. Compute the
gradient of the log-likelihood objective with respect to wi j by showing the following:

∂ log p(V = v)

∂wi j
=∑

h
p(H = h|V = v)vi h j −

∑
v,h

p(V = v, H = h)vi h j (5.3)

= E [Vi H j |V = v]−E [Vi H j ]. (5.4)

Hint 1: To save some writing, do not expand E(v,h) until you have ∂E(v,h)
∂wi j

.

Hint 2: The partition function, Z , is a function of wi j .

(f) After training, suppose H1 = 1 corresponds to Disney movies, and H2 = 1 corresponds
to the adventure genre. Which wi j do you expect to be positive, where i indexes the
visible nodes and j indexes the hidden nodes? List all of them.
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