
CSE515: Statistical Methods in Computer Science Winter, 2016

Homework 2
Due at noon on February 10, 2016

GUIDELINES: You can brainstorm with others, but please solve the problems and write up
the answers by yourself. You may use textbooks (Koller & Friedman, Russel & Norvig, etc.),
lecture notes, and standard programming references (e.g., online Java API documentation).
Please do NOT use any other resources or references (e.g., example code, online problem
solutions, etc.) without asking.

SUBMISSION INSTRUCTIONS: Submit this assignment by Dropbox. You submission should
include: A PDF containing written answers and all your code.

1 PROGRAMMING: LEARNING/INFERENCE IN HIDDEN MARKOV

MODEL (45 POINTS)

Task description. The task we will consider in this assignment is optical character recogni-
tion (OCR). The dataset we provide consists of a sequence of words, one character per row.
The very first character of each word was capitalized in the original data and has been omit-
ted for simplicity. The format of the data is described in generate_hmm_plots.m, so please
look through that file before continuing. This file provides sample code structure to generate
plots.
In this problem you will implement maximum likelihood estimation and the forward-backward
algorithm for Hidden Markov Models (HMMs). Let X t denote the t-th letter in a word and Ok

t
the value of the k-th pixel for the t-th character. The result should be a stationary model (one
that does not depend on t ), i.e., you should have a single distribution p(X1), a single CPT
p(X t |X t−1) and 64 CPTs p(Ok

t |X t ) (one for each pixel).

(a) Parameter Estimation (MLE/MAP) in HMMs: For this first part, you will set the param-
eters of the HMM using maximum likelihood and maximum a posteriori estimation
using several values of pseudo-count/hyperparameter α.

Your task is to fill in the missing code in the files hmm_learn.m. Note that hmm_learn.m
goes over the specifics of what parameters you need to learn. Because we will be com-
paring HMM to Naive Bayes later, hmm learn.m should also fit a probability model
p(X t ) which serves as the class prior for Naive Bayes.

To help debug your code and generate results, generate_hmm_plots.m will plot the
transition model that you learn, and the observation model for the letter ‘a’. You should
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see that the transition model “makes sense”, e.g. p(X t = u|X t−1 = q) should be high,
and that the observation model looks like a blurry version of the desired letter.

(b) The Forward Backward Algorithm: In this part, you will implement the forward-backward
algorithm for HMMs and compare its performance to a Naive Bayes approach which
classifies each character independently of all others. You have two programming tasks
for this sub-part.

i. hmm_fb.m - In this file, you will implement the forward-backward algorithm to
compute marginal probabilities P (X t |O1, . . . ,OT ). The input to this function is
the trained model from hmm_learn.m and the pixel data corresponding to a sin-
gle word (not the entire test set). See the file generate_hmm_plots.m to see how
hmm_fb.m is used.

ii. generate_hmm_plots.m - Run this file to train the HMM model and evaluate it on
the test data. Naive Bayes will serve as a baseline, but one critical line of code is
missing in this file. Remember that Naive Bayes computes,

P (X t |Ot ) ∝ P (Ot |X t )P (X t ),

and that P (X t ) was computed in hmm_learn.m, and P (Ot |X t ) was computed in
hmm_fb.m. You need to fill in this line before the code will run.

What to include in the write up: Try several values of the smoothing/pseudo-counts:
α = 0,1,2,4,8 and include the plots for the resulting observation model for ‘a’ and the
transition model in the write-up. Describe in 1-2 sentences the effect of smoothing.
Include a plot of accuracy on the test set vs. smoothing parameter α for HMM and NB.
Next, discuss (3-4 sentences) how the two algorithms differ in performance, what their
performance and errors are, and how/why they differ.

2 KALMAN FILTER (15 POINTS)

Often, we wish to monitor a continuous-state system whose behavior switches unpredictably
among a set of k distinct “modes.” For example, an aircraft trying to evade a missile can exe-
cute a series of distinct maneuvers that the missile may attempt to track. A Bayesian network
representation of such a switching Kalman filter model is shown in Figure 2.1.

(a) Suppose that the discrete state St has k possible values and that the prior continuous
state estimate P (X0) is a multivariate Gaussian distribution. Show that the prediction
P (X1) is a mixture of Gaussians – that is, a weighted sum of Gaussians such that the
weights sum to 1.

(b) Show that if the current continuous state estimate P (X t |e1:t ) is a mixture of m Gaus-
sians, then in the general case the updated state estimate P (X t+1|e1:t+1) will be a mix-
ture of km Gaussians.

(c) What aspect of the temporal process do the weights in the Gaussian mixture represent?
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Figure 2.1: A Bayesian network representation of a switching Kalman filter. The switching
variable St is a discrete state variable whose value determines the transition model
of the continuous state variables X t . For any discrete state i , the transition model
P (X t+1|X t ,St = i ) is a linear Gaussian model, just as in a regular Kalman filter. The
transition model for the discrete state, P (St+1|St ), can be thought as a matrix, as
in a hidden Markov model.

The results in (a) and (b) show that the representation of the posterior grows without limit
even for switching Kalman filters, which are among the simplest hybrid dynamic models.

3 GRAPH AND INDEPENDENCE RELATIONS (20 POINTS)

For i = 1,2,3, let Xi be an indicator variable for the event that a coin toss comes up heads
(which occurs with probability q). Supposing that that the Xi are independent, define Z4 =
X1 ⊕X2 and Z5 = X2 ⊕X3 where ⊕ denotes addition in modulo two arithmetic.

(a) Compute the conditional distribution of (X2, X3) given Z5 = 0; then, compute the con-
ditional distribution of (X2, X3) given Z5 = 1.

(b) Draw a directed graphical model (the graph and conditional probability tables) for
these five random variables. What independence relations does the graph imply?

(c) Draw an undirected graphical model (the graph and compatibility functions) for these
five variables. What independence relations does it imply?

(d) Under what conditions on q do we have Z5 ⊥ X3 and Z4 ⊥ X1? Are either of these
marginal independence assertions implied by the graphs in (b) or (c)?

4 RESTRICTED BOLTZMANN MACHINES (20 POINTS)

Restricted Boltzmann Machines (RBMs) are a class of Markov networks that have been used
in several applications, including image feature extraction, collaborative filtering, and re-
cently in deep belief networks. An RBM is a bipartite Markov network consisting of a visible
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Figure 4.1: An example RBM with 5 visible units and 2 hidden units.

(observed) layer and a hidden layer, where each node is a binary random variable. One way
to look at an RBM is that it models latent factors that can be learned from input features. For
example, suppose we have samples of binary user ratings (like vs. dislike) on 5 movies: Find-
ing Nemo (V1), Avatar (V2), Star Trek (V3), Aladdin (V4), and Frozen (V5). We can construct the
following RBM:
Here, the bottom layer consists of visible nodes V1, . . . ,V5 that are random variables repre-
senting the binary ratings for the 5 movies, and H1, H2 are two hidden units that represent
latent factors to be learned during training (e.g., H1 might be associated with Disney movies,
and H2 could represent the adventure genre). If we are using an RBM for image feature ex-
traction, the visible layer could instead denote binary values associated with each pixel, and
the hidden layer would represent the latent features. However, for this problem we will stick
with the movie example. In the following questions, let V = (V1, . . . ,V5) be a vector of ratings
(e.g. the observation v = (1,0,0,0,1) implies that a user likes only Finding Nemo and Aladdin).
Similarly, let H = (H1, H2) be a vector of latent factors. Note that all the random variables are
binary and take on states in {0,1}. The joint distribution of a configuration is given by

P (V = v, H = h) = 1

Z
e−E(v,h), (4.1)

where
E(v,h) =−∑

i j
wi j vi h j −

∑
i

ai vi −
∑

j
b j h j (4.2)

is the energy function, {wi j }, {ai }, {b j } are model parameters, and

Z = Z ({wi j }, {ai }, {b j }) =∑
v,h

e−E(v,h)

is the partition function, where the summation runs over all joint assignments to V and H .

(a) Using Equation (4.1), show that p(H |V ), the distribution of the hidden units condi-
tioned on all of the visible units can be factorized as

p(H |V ) =∏
j

p(H j |V ) (4.3)
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where
p(H j = 1|V = v) =σ(b j +

∑
i

wi j vi )

and σ(s) = e s

1+e s is the sigmoid function. Note that p(H j = 0|V = v) = 1−p(H j = 1|V =
v).

(b) Give the factorized form of p(V |H), the distribution of the visible units conditioned on
all of the hidden units. This should be similar to what’s given in part 1, and so you may
omit the derivation.

(c) Can the marginal distribution over hidden units p(H) be factorized? If yes, give the
factorization. If not, give the form of p(H) and briefly justify.

(d) Based on your answers so far, does the distribution in Equation (4.1) respect the con-
ditional independencies of Figure 4.1? Explain why or why not. Are there any indepen-
dencies in Figure 4.1 that are not captured in Equation (4.1)?
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