
CSE515: Statistical Methods in Computer Science Winter, 2016

Homework 1
Due at noon on January 27, 2016

GUIDELINES: You can brainstorm with others, but please solve the problems and write up
the answers by yourself. You may use textbooks (Koller & Friedman, Russel & Norvig, etc.),
lecture notes, and standard programming references (e.g., online Java API documentation).
Please do NOT use any other resources or references (e.g., example code, online problem
solutions, etc.) without asking.

SUBMISSION INSTRUCTIONS: Submit this assignment by Dropbox. You submission should
include: A PDF containing written answers; source code for the mixture model; and a README
explaining how to compile and run the source code under Linux (e.g., tricycle) or Windows
(e.g., aqua).

1 PROBABILITY THEORY (25 POINTS)

(a) Sum and Product Rule (5 points)

Suppose that we have three colored boxes r (red), b (blue), and g (green). Box r con-
tains 3 apples, 4 oranges, and 3 limes, box b contains 1 apple, 1 orange, and 0 limes, and
box g contains 3 apples, 3 oranges, and 4 limes. If a box is chosen at random with prob-
abilities p(r ) = 0.2, p(b) = 0.2, p(g ) = 0.6, and a piece of fruit is removed from the box
(with equal probability of selecting any of the items in the box), then what is the prob-
ability of selecting an apple? If we observe that the selected fruit is in fact an orange,
what is the probability that it came from the green box?

(b) Reasoning by Cases (4 points)

An often useful rule in dealing with probability is known as reasoning by cases. Let X ,
Y , and Z be random variables, then

P (X |Y ) =∑
z

P (X , z|Y ).

Prove this equality using the chain rule of probabilities and basic properties of (condi-
tional) distribution.

(c) Conditional Independence (16 points)

Prove or disprove (by providing a counterexample) each of the following properties of
independence:
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(i) (X ⊥ Y ,W |Z ) implies (X ⊥ Y |Z ).

(ii) (X ⊥ Y |Z ) and (X ,Y ⊥W |Z ) imply (X ⊥W |Z ).

(iii) (X ⊥ Y ,W |Z ) and (Y ⊥W |Z ) imply (X ,W ⊥ Y |Z ).

(iv) (X ⊥ Y |Z ) and (X ⊥ Y |W ) imply (X ⊥ Y |Z ,W ).

2 BAYESIAN ANALYSIS OF THE UNIFORM DISTRIBUTION (25 POINTS)

(a) (10 points) Consider the uniform distribution Unif(0,θ). The maximum likelihood es-
timate is θ̂ = maxD, but this is unsuitable for predicting future data since it puts zero
probability mass outside the training data. In this exercise, we will perform a Bayesian
analysis of the uniform distribution. The conjugate prior is the Pareto distribution,
p(θ) = Pareto(θ|b,K ), the pdf of which is defined in the following form

Pareto(θ|b,K ) = K bK θ−(K+1)I(θ ≥ b).

Given a Pareto prior, the joint distribution of θ and D= (x1, . . . , xN ) is

p(D,θ) = K bK

θN+K+1
I(θ ≥ max(D))

Let m = max(D). The evidence (the probability that all N samples came from the same
uniform distribution is

p(D) =
∫ ∞

m

K bK

θN+K+1
dθ (2.1)

=
{

K
(N+K )bN , if m ≤ b

K bK

(N+K )mN+K , if m > b.
(2.2)

Derive the posterior p(θ|D), and show that it can be expressed as a Pareto distribution.

(b) (15 points) Suppose you arrive in a new city and see a taxi number 100. How many taxis
are there in this city? Let us assume taxis are numbered sequentially as integers starting
from 0, up to some unknown upper bound θ. (We number taxis from 0 for simplicity;
we can also count from 1 without changing the analysis.) Hence the likelihood function
is p(x) = U (0,θ), the uniform distribution. The goal is to estimate θ. We will use the
Bayesian analysis from the previous question.

(i) Suppose we see one taxi numbered 100, so D = {100},m = 100, N = 1. Using an
(improper) non-informative prior on θ of the form p(θ) = Pa(θ|0,0) ∝ 1/θ, what
is the posterior p(θ|D)?

(ii) Rather than trying to compute a point estimate of the number of taxis, we can
compute the predictive density over the next taxicab number using

p(D ′|D,α) =
∫

p(D ′|θ)p(θ|D,α)dθ = p(D ′|β),
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where α= (b,K ) are the hyper-parameters, β= (c, N +K ) are the updated hyper-
parameters. Now consider the case D = {m}, and D ′ = {x}. Using P (D) derived
in question 2.(a), write down an expression for p(x|D,α). As above, use a non-
informative prior b = K = 0.

3 PROGRAMMING (50 POINTS)

EM. Implement the EM algorithm for mixtures of Gaussians in your choice of programming
language. (C, C++, Java, Perl, Python, and OCaml are all fine. Please ask about any others.)
Assume that means, covariances, and cluster priors are all unknown. For simplicity, you can
assume that covariance matrices are diagonal (i.e., all you need to estimate is the variance of
each variable). Initialize the cluster priors to a uniform distribution and the standard devi-
ations to a fixed fraction of the range of each variable. Your algorithm should run until the
relative change in the log likelihood of the training data falls below some threshold (e.g., stop
when log likelihood improves by < 0.1%). The program should be run on the command line
with the following arguments:

. / gaussmix <# of clusters > <data f i l e > <model f i l e >

It should read in data files in the following format:

<# of examples> <# of features >
<ex . 1 , feature 1> <ex . 1 , feature 2> . . . <ex . 1 , feature n>
<ex . 2 , feature 1> <ex . 2 , feature 2> . . . <ex . 2 , feature n>
. . .

And output a model file in the following format:

<# of clusters > <# of features >
<clust1 . prior > <clust1 . mean1> <clust1 . mean2> . . . <clust1 . var1 > . . .
<clust2 . prior > <clust2 . mean1> <clust2 . mean2> . . . <clust2 . var1 > . . .
. . .

Train and evaluate your model on the Seeds dataset, available from the course Web page.
Each data point represents a wheat kernel, with features representing geometrical properties
of kernels. We provide a single default train/test split with the class removed to test general-
ization. You can find the full dataset and more information in the UCI repository (and linked
from the course Web page). Start by using 3 clusters, since the Seeds dataset has three differ-
ent classes. Evaluate your models on the test data.
Two recommendations:

• To avoid underflows, work with logs of probabilities, not probabilities.

• To compute the log of a sum of exponentials, use the “log-sum-exp” trick:

log
∑

i
exp(xi ) = xmax + log

∑
i

exp(xi −xmax)

Answer the following questions with both numerical results and discussion.
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(a) Plot train and test set likelihood vs. iteration. How many iterations does EM take to
converge?

(b) Experiment with two different methods for initializing the mean of each Gaussian in
each cluster: random values (e.g., uniformly distributed from some reasonable range)
and random examples (i.e., for each cluster, pick a random training example and use
its feature values as the means for that cluster). Does one method work better than
the other or do the two work approximately the same? Why do you think this is? (Use
whichever version works best for the remaining questions.)

(c) Run the algorithm 10 times with different random seeds. How much does the log like-
lihood change from run to run?

(d) Infer the most likely cluster for each point in the training data. How does the true clus-
tering (see Seeds-true.data) compare to yours?

(e) Graph the training and test set log likelihoods, varying the number of clusters from 1
to 10. Discuss how the training set log likelihood varies and why. Discuss how the test
set log likelihood varies, how it compares to the training set log likelihood, and why.
Finally, comment on how train and test set performance with the “true” number of
clusters (3) compares to more and fewer clusters and why.
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