
CSE 515: Statistical Methods in Computer Science

Homework #2

Due at noon on February 11th

Guidelines: You can brainstorm with others, but please solve the problems and write
up the answers by yourself. You may use textbooks (Koller & Friedman, Russel & Norvig,
etc.) and lecture notes from class. Please do NOT use any other resources or references
(e.g., example code, online problem solutions, etc.) without asking.

Submission instructions: Submit this assignment either by email to Chloé Kiddon
(chloe@cs) or in person at the start of class on February 11th. If submitting by email, the
attachment should be a PDF. Typed answers are highly preferred, but if this is a hardship,
then handwritten answers are fine as long as they are completely legible.

1. Let’s suppose we want to model the weather with an HMM. We can look outside our
window in the morning each day and easily determine whether it is Sunny (S), Rainy (R)
or Cloudy (C). We know that the weather is dependent on the current pressure system
(for simplicity let’s assume the weather is only dependent on that); however, we don’t
have access to any fancy meteorology equipment. Let’s assume there is either a High
Pressure (H) system or a Low Pressure (L) system on any given day. For our HMM, we
will assume uniform start probabilities. The day-to-day transition probabilities and
the emission probabilities are as follows:

πi πi+1 H L
H 0.6 0.4
L 0.4 0.6

πi xi S R C
H 0.7 0.1 0.2
L 0.2 0.7 0.1

(a) Compute the most likely sequence of the five hidden states for the observed se-
quence R, C, C, S, S by stepping through the Viterbi algorithm by hand. (You
don’t need to show every mathematical operation; however, you may want to
show at least one or two sample calculations to allow for partial credit if the final
answer is incorrect.)

(b) Use the forward-backwards algorithm to compute the probability distribution
over states at the time i = 3. (Again, you don’t need to show every mathematical
operation; however, you may want to show at least one or two sample calculations
to allow for partial credit if the final answer is incorrect.)

(c) Is the most likely state the same as the state in the most likely sequence? Will
this always be the case? Why?
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(d) Now let’s assume we wanted to create a different model of the weather. This time,
instead of using the pressure systems as the hidden states, we wanted to use the
four seasons (Spring, Summer, Fall, and Winter) as our hidden states. Assume
the probability that a season transitions to its following season (e.g., Spring →
Summer, Summer → Fall, etc.) is p and the probability that it stays in the same
season is (1− p).

i. If at time t it is Summer, what is the distribution over the number of days d
until it first becomes Fall (that is, the smallest number d such that the season
at time t+ d is not Summer)?

ii. Based on your previous answer, why is an HMM not an ideal model for
modeling weather with the seasons as hidden states?

2. Assume a 1-D linear Gaussian dynamical model defined over a set of state variables X
and a set of observation variables Z as follows:
xi ∼ N (xi−1, σx)
zi ∼ N (xi, σz)
Assume the initial mean and standard deviation of the belief state are µ0 and σ0,
respectively.

(a) Assume σx = 0, σz = 1, µ0 = z0, and σ0 = 1. If the observations at the first three
time steps are z1, z2, z3, what are the mean and standard deviation at time t = 3
(that is, what are µ3 and σ3) in terms of z0, z1, z2, and z3? Briefly explain why
the parameters and/or initial conditions specified cause the optimal estimate for
x (i.e., the mean) to have this form.

(b) What if we use all the same parameters, initial conditions, and observations as
the previous question except that now σx = 1. What is the mean and standard
deviation at time t = 3? How does the mean compare to the answer from the
previous question and why did the change of σd cause this behavior?

3. A group of thieves are planning a bank heist. Here are the details:

• The heist’s success depends on how much cash they steal and whether or not they
get away.

• It is easier for the thieves to get away if they remembered to gas up the car.

• The more the group practices and the more coffee they drink, the sneakier they
are.

• The sneakier the group, the more easily it can get past the alarm.

• If the alarm sounds, the vault bolts closed, which makes it harder to steal cash.

• The group is better at remembering things if they’ve had some coffee.

(a) Draw the graph of a Bayesian network consistent with the statements above us-
ing variables Success, GetAway, GetCash, Coffee, Gas, Practice, Sneakiness, and
Alarm.
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(b) In this network, what is the Markov blanket of Coffee?

(c) According to this network, if the team is very sneaky is the car more likely to be
gassed?

(d) According to this network, are the amount of practice and the group getting away
independent?

(e) According to this network, are the amount of practice and the group getting away
independent given the team doesn’t succeed?

(f) According to this network, are the amount of practice and the group getting away
independent given the team had coffee?

(g) Convert the Bayesian network to a Markov network using moralization.

4. A group of thieves has been arrested and is sitting in holding: Al, Bugsy, Carmine,
and Danny. When interrogated, each thief tells his story independently of the rest,
unless he conspired with someone else while in the holding pen to tell the same story.
Carmine refuses to talk Bugsy ever since Bugsy forgot to gas the car, and Al won’t
speak to Danny since Danny tripped the alarm. However, every other pairing of two
thieves spends some time talking while in holding. (They were in there a long time.)
Assume we have four variables representing the story each of the thieves tell the police.

(a) List the set of conditional independencies that the distribution of these four vari-
ables should satisfy.

(b) Can you create a Bayesian network that captures all the independence statements?
If so, draw the network. If not, explain why.

(c) Can you create a Markov network that captures all the independence statements?
If so, draw the network. If not, explain why.

5. (a) Consider the alarm network show below:

SportsOnTV

Burglary Earthquake

JohnCall MaryCall

NaptimeAlarm

Construct a Bayesian network structure with nodes Burglary, Earthquake, John-
Call, MaryCall, SportsOnTV, and Naptime that is consistent with any probability
distribution over the network after marginalizing out Alarm. Your network should
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be the minimal consistent network, i.e., preserve as many independencies as pos-
sible while consistently representing all necessary dependencies. (Formally, you
are constructing a minimal I-map for the marginal distribution over those vari-
ables defined by the above network. For more information about I-maps, refer to
Section 3.2.3 of Koller & Friedman.)

(b) Generalize the procedure you used above to an arbitrary network. More precisely,
assume we are given a network BN, an ordering X1, . . . , Xn that is consistent
with the ordering of the variables in BN, and a node Xi to be removed. Specify a
network BN’ such that BN’ is consistent with this ordering, and such that BN’ is
the minimal consistent network of PBN(X1, . . . , Xi−1, Xi+1, . . . Xn). Your answer
must be an explicit specification of the set of parents for each variable in BN’.

6. Consider the network shown below:

F1

D1

F2

D2

Fm

Dn

F2

...

...

We assume that all variables are binary, and that the Fi variables in the second layer
all have noisy or CPDs. Specifically, the CPD of Fi is given by:

P (f 0
i | PaFi

) = (1− λi,0)
∏

Dj∈PaFi

(1− λi,j)dj

where λi,j is the noise parameter associated with parent Dj of variable Fi. (This net-
work architecture, called a BN2O network, is characteristic of several medical diagnosis
applications, where the Di variables represent diseases (e.g., flu, pneumonia), and the
Fi variables represent medical findings (e.g., coughing, sneezing). For more information
about BN2O networks see box 5.C of Koller & Friedman.)

Our general task is medical diagnosis: We obtain evidence concerning some of the
findings, and we are interested in the resulting posterior probability over some subset
of diseases. Since we are only interested in computing the probability of a particular
subset of the diseases, we wish (for reasons of computational efficiency) to remove from
the network those disease variables that are not of interest at the moment.

(a) Begin by considering a particular variable Fi, and assume (without loss of gener-
ality) that the parents of Fi are D1, . . . , Dk, and that we wish to maintain only
the parents Di, . . . , D` for ` < k. Show how we can construct a new noisy or
CPD for Fi that preserves the correct joint distribution of D1, . . . , D`, Fi.
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(b) We now remove some fixed set of disease variables D from the network, executing
this pruning procedure for all the finding variable Fi, removing all parents Dj ∈
D. Is this transformation exact? In other words, if we compute the posterior
probability over some variableDi 6∈ D, will we get the correct posterior probability
(relative to our original model)? Justify your answer.
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