Undirected Graphical Models

Bayesian Network Representation

- Directed acyclic graph structure
 - Conditional parameterization
 - Independencies in graphs
 - From distribution to BN graphs

- Conditional probability distributions (CPDs)
 - Table
 - Deterministic
 - Context-specific (Tree, Rule CPDs)
 - Independence of causal influence (Noisy OR, GLMs)
 - Continuous variables
 - Hybrid models
The *Misconception* Example

- Four students get together in pairs to work on HWs: Alice, Bob, Charles, Debbie
- Only the following pairs meet: (A&B), (B&C), (C&D), (D&A)
- Let’s say that the prof accidentally misspoke in class
 - Each student may subsequently have figured out the problem.
 - In subsequent study pairs, they may transmit this newfound understanding to their partners.
- Consider 4 binary random variables
 - A, B, C, D: whether the student has the misconception or not.
- Independence assumptions?
- Can we find the P-map for these?

Reminder: Perfect Maps

- G is a perfect map (P-map) for P if I(P) = I(G)
- Does every distribution have a P-map?
 - No: some structures cannot be represented in a BN
 - *Independencies in P*: (A ⊥ D | B, C) and (B ⊥ C | A, D)

(B ⊥ C | A,D) does not hold (A ⊥ D) also holds
Representing Dependencies

- \((A \perp D \mid B,C)\) and \((B \perp C \mid A,D)\)
 - Cannot be modeled with a Bayesian network.
 - Can be modeled with an undirected graphical models (Markov networks).

Undirected Graphical Models (Informal)

- **Nodes** correspond to random variables
- **Edges** correspond to direct probabilistic interaction
 - An interaction not mediated by any other variables in the network.

- How to **parameterize**?
 - Local factor models are attached to sets of nodes
 - Factor elements are positive
 - Do not have to sum to 1
 - Represent affinities, compatibilities

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
<th>π(_{A,C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(^0)</td>
<td>d(^0)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>a(^0)</td>
<td>d(^1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a(^1)</td>
<td>d(^0)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a(^1)</td>
<td>d(^1)</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>π(_{A,B})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(^0)</td>
<td>b(^0)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>a(^0)</td>
<td>b(^1)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>a(^1)</td>
<td>b(^0)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a(^1)</td>
<td>b(^1)</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>π(_{C,D})</th>
</tr>
</thead>
<tbody>
<tr>
<td>c(^0)</td>
<td>d(^0)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c(^0)</td>
<td>d(^1)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>c(^1)</td>
<td>d(^0)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>c(^1)</td>
<td>d(^1)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>π(_{B,C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>b(^0)</td>
<td>c(^0)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>b(^0)</td>
<td>c(^1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b(^1)</td>
<td>c(^0)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b(^1)</td>
<td>c(^1)</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>
Undirected Graphical Models (Informal)

- Represents joint distribution
 - Unnormalized factor
 \[F(a,b,c,d) = \pi_1[a,b]\pi_2[a,c]\pi_3[b,d]\pi_4[c,d] \]
 - Probability
 \[P(a,b,c,d) = \frac{1}{Z}\pi_1[a,b]\pi_2[a,c]\pi_3[b,d]\pi_4[c,d] \]
 - Partition function
 \[Z = \sum_{a,b,c,d} \pi_1[a,b]\pi_2[a,c]\pi_3[b,d]\pi_4[c,d] \]

- As undirected graphical models represent joint distributions, they can be used for answering queries.

Undirected Graphical Models Blurb

- Useful when edge directionality cannot be assigned
- Simpler interpretation of structure
 - Simpler inference
 - Simpler independency structure
- Harder to learn parameters/structures
- We will also see models with combined directed and undirected edges
- Markov networks
Markov Network Structure

- Undirected graph \(H \)
 - Nodes \(X_1, \ldots, X_n \) represent random variables

- \(H \) encodes independence assumptions
 - A path \(X_1-X_2-\ldots-X_k \) is active if none of the \(X_i \) variables along the path are observed
 - \(X \) and \(Y \) are separated in \(H \) given \(Z \) if there is no active path between any node \(x \in X \) and any node \(y \in Y \) given \(Z \)
 - Denoted \(\text{sep}_H(X; Y \mid Z) \)

\[
\begin{align*}
D \perp \{A,C\} & \mid B & \iff & \text{Global independence associated with } H: \\
I(H) &= \{ (X \perp Y \mid Z) : \text{sep}_H(X; Y \mid Z) \}
\end{align*}
\]

Relationship with Bayesian Network

- Bayesian network
 - Local independencies \(\rightarrow \) Independence by d-separation (global)
- Markov network
 - Global independencies \(\rightarrow \) Local independencies

- Can all independencies encoded by Markov networks be encoded by Bayesian networks?
 - No, counter example – \((A \perp B \mid C,D)\) and \((C \perp D \mid A,B)\)

- Can all independencies encoded by Bayesian networks be encoded by Markov networks?
 - No, immoral v-structures (explaining away)

- Markov networks encode monotonic independencies
 - If \(\text{sep}_H(X; Y \mid Z) \) and \(Z \perp Z' \) then \(\text{sep}_H(X; Y \mid Z') \)
Markov Network Factors

- A **factor** is a function from value assignments of a set of random variables \mathbf{D} to real positive numbers \Re^+
 - The set of variables \mathbf{D} is the **scope** of the factor

- Factors generalize the notion of CPDs
 - Every CPD is a factor (with additional constraints)

Factors and Joint Distribution

- Can we represent any joint distribution by using only factors that are defined on edges?
 - **No!** Compare # of parameters
 - Example: n binary RVs
 - Joint distribution has 2^n-1 independent parameters
 - Markov network with edge factors has $4 \binom{n}{2}$ parameters

Needed: $2^7 - 1 = 127!$

Edge parameters: $4 \cdot \binom{7}{2} = 84$

- Factors introduce constraints on joint distribution
Factors and Graph Structure

- Are there constraints imposed on the network structure \(H \) by a factor whose scope is \(D \)?
 - Hint 1: think of the independencies that must be satisfied
 - Hint 2: generalize from the basic case of \(|D| = 2\)

The induced subgraph over \(D \) must be a clique (fully connected)

Why? otherwise two unconnected variables may be independent by blocking the active path between them, contradicting the direct dependency between them in the factor over \(D \).

Maximal cliques
- \(\{A,B\} \)
- \(\{B,C\} \)
- \(\{C,D\} \)
- \(\{A,D\} \)

Markov Network Factors: Examples
Markov Network Distribution

- A distribution \(P \) factorizes over \(H \) if it has:
 - A set of subsets \(D_1, \ldots, D_m \) where each \(D_i \) is a complete (fully connected) subgraph in \(H \)
 - Factors \(\pi_1[D_1], \ldots, \pi_m[D_m] \) such that

\[
P(X_1, \ldots, X_n) = \frac{1}{Z} \prod f(X_1, \ldots, X_n) = \frac{1}{Z} \prod \pi_i[D_i]
\]

where un-normalized factor: \(f(X_1, \ldots, X_n) = \prod \pi_i[D_i] \)

- \(Z \) is called the partition function
- \(P \) is also called a Gibbs distribution over \(H \)

Pairwise Markov Networks

- A pairwise Markov network over a graph \(H \) has:
 - A set of node potentials \(\{\pi[X_i]: i=1, \ldots, n\} \)
 - A set of edge potentials \(\{\pi[X_i,X_j]: X_i,X_j \in H\} \)

- Example:
Logarithmic Representation

- We represent energy potentials by applying a log transformation to the original potentials
 - $\pi[D] = \exp(-\varepsilon[D])$ where $\varepsilon[D] = -\ln \pi[D]$
- Any Markov network parameterized with factors can be converted to a logarithmic representation
- The log-transformed potentials can take on any real value
- The joint distribution decomposes as

\[
P(X_1, \ldots, X_n) = \frac{1}{Z} \exp \left[-\sum_{i=1}^{m} \varepsilon_i[D_i] \right]
\]

\[\text{Log } P(\mathbf{X}) \text{ is a linear function.}\]

I-Maps and Factorization

- Independency mappings (I-map)
 - $I(P)$ – set of independencies $(X \perp Y | Z)$ in P
 - I-map – independencies by a graph is a subset of $I(P)$

- Bayesian Networks
 - Factorization and reverse factorization theorems
 - G is an I-map of P iff P factorizes as $P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | Pa(X_i))$

- Markov Networks
 - Factorization and reverse factorization theorems
 - H is an I-map of P iff P factorizes as $P(X_1, \ldots, X_n) = \frac{1}{Z} \prod \pi[D_i]$
Reverse Factorization

- \(P(X_1, \ldots, X_n) = \frac{1}{Z} \prod \pi_i[D_i] \Rightarrow H \) is an I-map of \(P \)

- **Proof:**
 - Let \(X, Y, W \) be any three disjoint sets of variables such that \(W \) separates \(X \) and \(Y \) in \(H \)
 - We need to show \((X \perp Y | W) \in I(P) \)

- **Case 1:** \(X \cup Y \cup W = U \) (all variables)
 - As \(W \) separates \(X \) and \(Y \) there are no direct edges between \(X \) and \(Y \)
 - any clique in \(H \) is fully contained in \(X \cup W \) or \(Y \cup W \)
 - Let \(I_X \) be subcliques in \(X \cup W \) and \(I_Y \) be subcliques in \(Y \cup W \) (not in \(X \cup W \))

\[
\prod_{\pi_i[D_i], \pi_i[D_j]} = \frac{1}{Z} f(X, W)g(Y, W) \\
\Rightarrow (X \perp Y | W) \in I(P)
\]
Factorization

- If H is an I-map of P then \(P(X_1, \ldots, X_n) = \frac{1}{Z} \prod \pi_i[D_i] \)

- Holds only for positive distributions P
 - Hammerly-Clifford theorem

- Defer proof

Relationship with Bayesian Network

- Bayesian Networks
 - **Semantics** defined via local independencies \(I_L(G) \).
 - Global independencies induced by d-separation
 - Local and global independencies equivalent since one implies the other

- Markov Networks
 - **Semantics** defined via global separation property \(I(H) \)
 - Can we define the induced local independencies?
 - We show two definitions (call them "Local Markov assumptions")
 - All three definitions (global and two local) are equivalent only for positive distributions P
Pairwise Independencies

- Every pair of disconnected nodes are separated given all other nodes in the network

Formally: $I_p(H) = \{ (X \perp Y | U - \{X,Y\}) : X \neq Y \notin H \}$

Example:
- $(A \perp D | B,C,E)$
- $(B \perp C | A,D,E)$
- $(D \perp E | A,B,C)$

Local Independencies

- Every node is independent of all other nodes given its immediate neighboring nodes in the network
 Markov blank of X, $MB_H(X)$

Formally: $I_L(H) = \{ (X \perp U-\{X\}-MB_H(X) | MB_H(X)) : X \in H \}$

Example:
- $(A \perp D | B,C,E)$
- $(B \perp C | A,D,E)$
- $(C \perp B | A,D,E)$
- $(D \perp E,A | B,C)$
- $(E \perp D | A,B,C)$
Relationship Between Properties

- Let $I(H)$ be the **global separation** independencies
- Let $I_L(H)$ be the **local (Markov blanket)** independencies
- Let $I_p(H)$ be the **pairwise** independencies

- For any distribution P:
 - $I_p(H) \rightarrow I(H)$
 - The assertion in $I(H)$, that a node is independent of all other nodes given its neighbors, is part of the separation independencies since there is no active path between a node and its non-neighbors given its neighbors
 - $I_L(H) \rightarrow I_p(H)$
 - Follows from the monotonicity of independencies in Markov networks (if $(X \perp Y|Z)$ and $Z \subseteq Z'$ then $(X \perp Y|Z')$)

Proof relies on intersection property for probabilities $(X \perp Y|Z,W)$ and $(X \perp W|Z,Y) \rightarrow (X \perp Y,W|Z)$ which holds in general only for positive distributions

- Details on the textbook

Thus, for positive distributions
- $I(H) \leftrightarrow I_L(H) \leftrightarrow I_p(H)$

- How about a non-positive distribution?
The Need for Positive Distribution

- Let P satisfy
 - A is uniformly distributed
 - $A=B=C$

- P satisfies $I_P(H)$
 - $(B \perp C|A)$, $(A \perp C|B)$
 (since each variable determines all others)

- P does not satisfy $I_L(H)$
 - $(C \perp A,B)$ needs to hold according to $I_L(H)$ but does not hold in the distribution

Constructing Markov Network for P

- **Goal**: Given a distribution, we want to construct a Markov network which is an I-map of P

- Complete (fully connected) graphs will satisfy but are not interesting

- Minimal I-maps: A graph G is a minimal I-Map for P if:
 - G is an I-map for P
 - Removing any edge from G renders it not an I-map

- **Goal**: construct a graph which is a minimal I-map of P
Constructing Markov Network for P

- If P is a positive distribution, then $I(H) \leftrightarrow I_L(H) \leftrightarrow I_P(H)$
- Thus, sufficient to construct a network that satisfies $I_P(H)$

- Construction algorithm
 - For every (X,Y) add edge if $(X \perp Y | U - \{X,Y\})$ does not hold in P

- Theorem: network is minimal and unique I-map
 - Proof:
 - I-map follows since $I_P(H)$ by construction and $I(H)$ by equivalence
 - Minimality follows since deleting an edge implies $(X \perp Y | U - \{X,Y\})$
 But, we know by construction that this does not hold in P since we added the edge in the construction process
 - Uniqueness follows since any other I-map has at least these edges and to be minimal cannot have additional edges

Constructing Markov Network for P

- If P is a positive distribution then
 $$I(H) \leftrightarrow I_L(H) \leftrightarrow I_P(H)$$
- Thus, sufficient to construct a network that satisfies $I_L(H)$

- Construction algorithm
 - Connect each X to every node in the minimal set Y s.t.:
 $$\{(X \perp U - \{X\} - Y | Y) : X \in H\}$$

- Theorem: network is minimal and unique I-map
Markov Network Parameterization

- Markov networks have too many degrees of freedom
 - A clique over n binary variables has 2^n parameters but the joint has only 2^n-1 parameters
 - The network A—B—C has clique \{A,B\} and \{B,C\}
 - Both capture information on B which we can choose where we want to encode (in which clique)
 - We can add/subtract between the cliques
 - We can come up with infinitely many sets of factor values that lead to the same distribution

- Need: conventions for avoiding ambiguity in parameterization
 - Can be done using a canonical parameterization (see K&F 4.4.2.1)

Factor Graphs

- From the Markov network structure we do not know whether parameterization involves maximal cliques or edge potentials
 - Example: fully connected graph may have pairwise potentials or one large (exponential) potential over all nodes

- Solution: Factor Graphs
 - Undirected graph
 - Two types of nodes
 - Variable nodes
 - Factor nodes
 - Parameterization
 - Each factor node is associated with exactly one factor
 - Scope of factor are all neighbor variables of the factor node
Factor Graphs

- Example
 - Exponential (joint) parameterization
 - Pairwise parameterization

![Factor graphs diagram]

- **Markov network**
 - Factor graph for joint parameterization
 - Factor graph for pairwise parameterization

Local Structure

- Factor graphs still encode complete tables

- A feature $\phi[D]$ on variables D is an indicator function that for some $y \in D$:

 $\phi[D] = \begin{cases}
 1 & \text{when } x = w \\
 0 & \text{otherwise}
 \end{cases}$

- A distribution P is a log-linear model over H if it has
 - Features $\phi_1[D_1], \ldots, \phi_k[D_k]$ where each D_i is a complete subgraph in H
 - A set of weights w_1, \ldots, w_k such that

$$P(X_1, \ldots, X_n) = \frac{1}{Z} \exp\left[-\sum_{i=1}^{k} w_i \phi[D_i]\right]$$
Feature Representation

- Several features can be defined on one clique
 → any factor can be represented by features, where in the most general case we define a feature and weight for each entry in the factor

- Log-linear model is more compact for many distributions especially with large domain variables

- Representation is intuitive and modular
 - Features can be modularly added between any interacting sets of variables

Markov Network Parameterizations

- Choice 1: Markov network
 - Product over potentials
 - Right representation for discussing independence queries

- Choice 2: Factor graph
 - Product over graphs
 - Useful for inference (later)

- Choice 3: Log-linear model
 - Product over feature weights
 - Useful for discussing parameterizations
 - Useful for representing context specific structures

- All parameterizations are interchangeable
Domain Application: Vision

- The image segmentation problem
 - Task: Partition an image into distinct parts of the scene
 - Example: separate water, sky, background

Markov Network for Segmentation

- Grid structured Markov network
- Random variable X_i corresponds to pixel i
 - Domain is $\{1,...,K\}$
 - Value represents region assignment to pixel i
- Neighboring pixels are connected in the network
Markov Network for Segmentation

- Appearance distribution
 - w^k_i - extent to which pixel i “fits” region k (e.g., difference from typical pixel for region k)
 - Introduce node potential $\exp(-w^k_i \mathbf{1}{X_i=k})$

- Edge potentials
 - Encodes contiguity preference by edge potential $\exp(\lambda \mathbf{1}{X_i=X_j})$ for $\lambda > 0$

- Solution: inference
 - Find most likely assignment to X_i variables
Example Results

Result of segmentation using node potentials alone, so that each pixel is classified independently.

Result of segmentation using a pairwise Markov network encoding interactions between adjacent pixels.

Summary: Markov Network Representation

- Independencies in graph H
 - Global independencies $I(H) = \{ (X \perp Y | Z) : \text{sep}_H(X;Y|Z) \}$
 - Local independencies $L(H) = \{ (X \perp \text{U} - \{X\} - \text{MB}_H(X) | \text{MB}_H(X)) : X \in H \}$
 - Pairwise independencies $P(H) = \{ (X \perp Y | \text{U} - \{X,Y\}) : X - Y \notin H \}$
 - For any positive distribution P, they are equivalent.
- (Reverse) factorization theorem: I-map \leftrightarrow factorization
- Markov network factors
 - Has to encompass cliques
 - Maximal cliques, edge factors
- Log-linear model
 - Features instead of factors
- Pairwise Markov network
 - Node/edge potentials
 - Application in vision (image segmentation)
- What next?
 - Constructing Markov networks from Bayesian networks
 - Hybrid models (e.g. Conditional Random Fields)