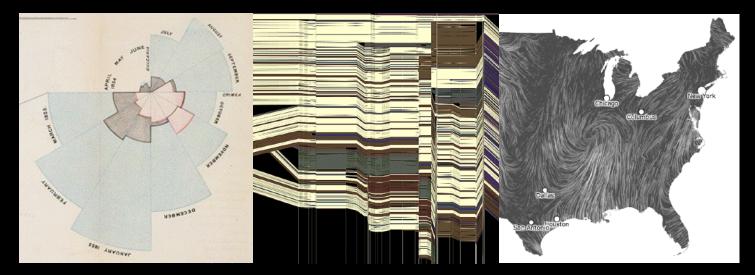
CSE 512 - Data Visualization **Uncertainty**



Jeffrey Heer University of Washington (with significant material from Michael Correll)

"I estimate that we catch 25% of our 100x errors, and 5% of our 5x errors."

Anonymous Data Science Team Manager

Topics

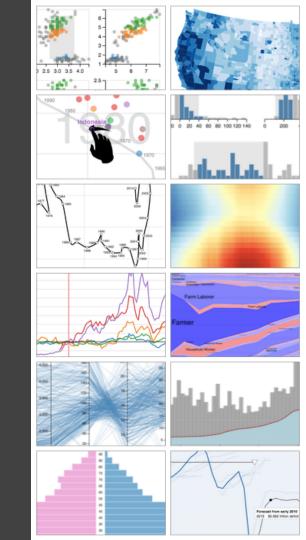
What Does Uncertainty Mean?

Uncertainty Visualization

Avoid Prematurely Suppressing Uncertainty Visual Encodings of Uncertainty Frequency Framing & Hypothetical Outcomes

What Can Go Wrong? Inferential Integrity Graphical Inference & Model Checks

GOAL: Try not to fool yourself!



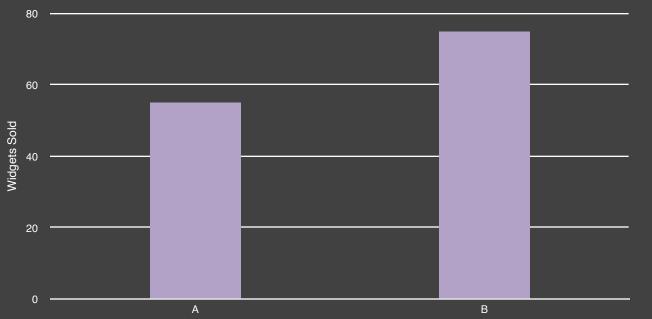
What Does Uncertainty Mean?

Things "Uncertainty" Can Mean

Doubt Risk Variability Error Lack of Knowledge Hedging

A Bar Chart

Sales of Widgets for Stores A and B

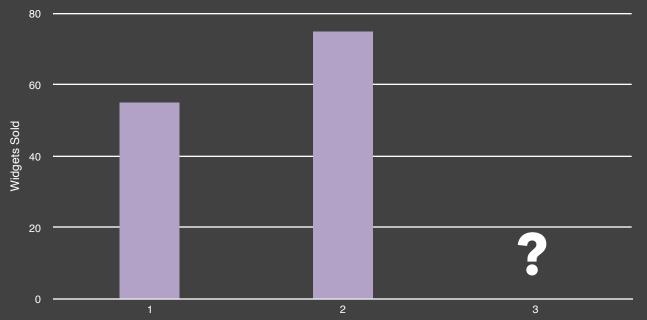


Measurement Uncertainty

Sales of Widgets for Stores A and B

Forecast Uncertainty

Sales of Widgets for Quarters 1 and 2



Decision Uncertainty

Uncertainty Sources

Measurement Uncertainty

"We're not sure what the data are"

Model Uncertainty

"We're not sure how the data fit together"

Forecast Uncertainty

"We're not sure what will happen to the data next"

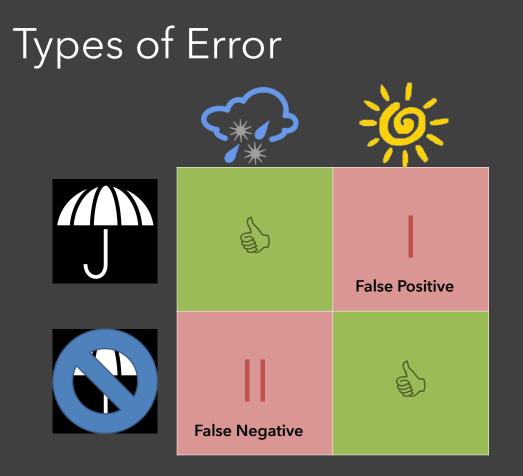
Decision Uncertainty

"We're not sure what to do with the data"

Should I Bring an Umbrella?

Decision Uncertainty

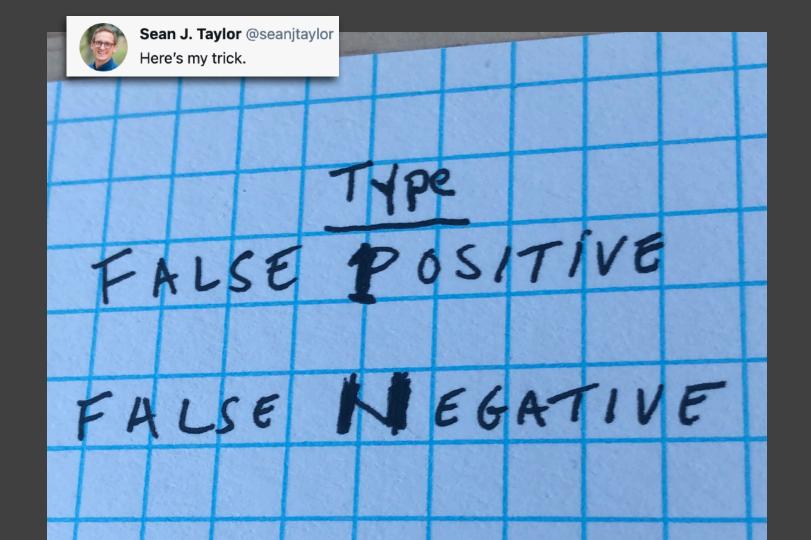
"50% Chance of Rain"



The Boy Who Cried Wolf

Type I: False Positive

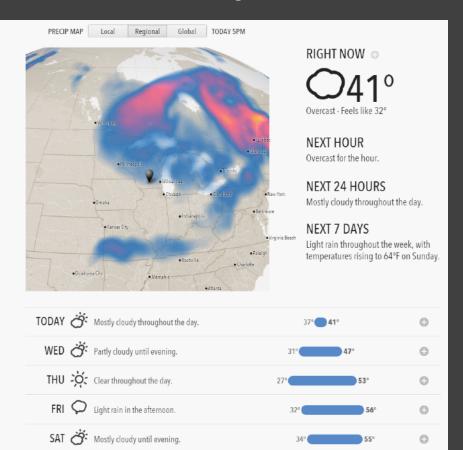
Type II: False Negative



Model Uncertainty

"50% Chance of Rain"

Model Uncertainty



What Does Uncertainty Mean?

Any one of a number of potentially interconnected quantitative, qualitative, or factors that affect the quality, reliability, or utility of your data or data-driven decisions. Anything that can cause you to be unsure about your data or how to use it.

What Does Uncertainty Mean?

Any one of a number of potentially interconnected quantitative, qualitative, or factors that affect the quality, reliability, or utility of your data or data-driven decisions. Anything that can cause you to be unsure about your data or how to use it.

LOTS OF THINGS

Uncertainty Visualization

Uncertainty Visualization

There are different **types** and **sources** of uncertainty.

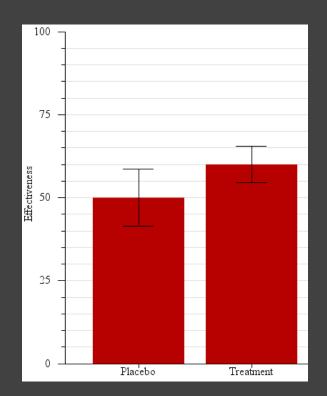
We can **quantify** or **model** our uncertainty.

The visual presentation of uncertainty can **clash** with cognitive and perceptual biases.

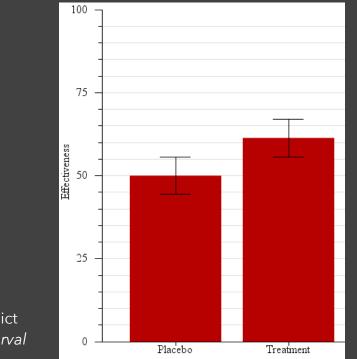
Avoid Prematurely Suppressing Uncertainty

Error Bars

The mean treatment effect is higher than than the placebo. Is this difference in means statistically significant?

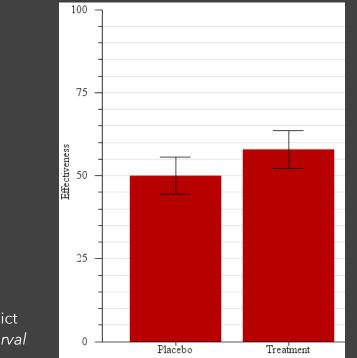


Guess the p-value...



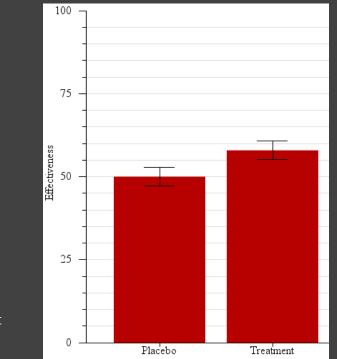
Error bars depict 95% Conf. Interval

Guess the p-value...



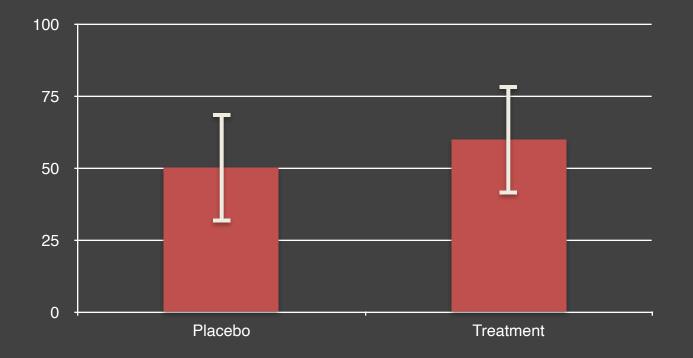
Error bars depict 95% Conf. Interval

Guess the p-value...

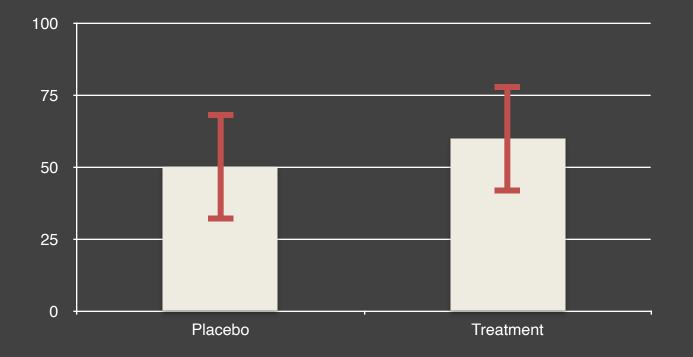


Error bars depict standard error

Misplaced Emphasis?



Misplaced Emphasis?



For inference tasks, focus on the **uncertainty**, not the point estimate!

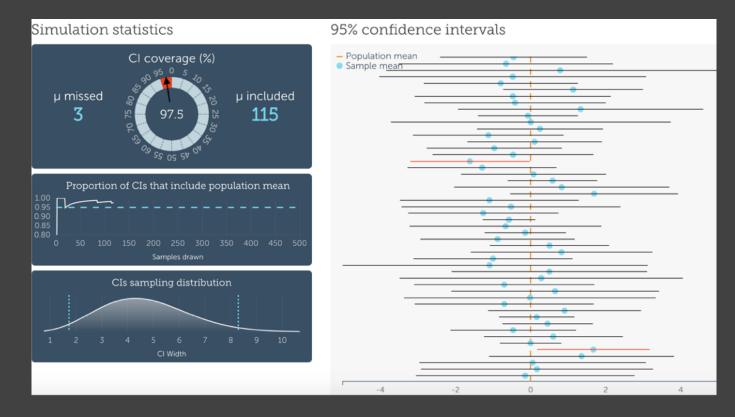
Confidence Intervals

What does a 95% confidence interval indicate? One interpretation is: there is a 95% chance that the population mean is within the interval.

Wrong!

Rather, given an infinite number of independent experiments, 95% of the confidence intervals generated will contain the true population mean. "Confidence" concerns the procedure, not the data. (Though see Bayesian *credible intervals*...)

Confidence Intervals

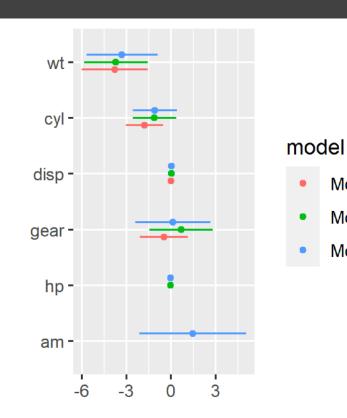


Regression Coefficients

Model 1

Model 2

Model 3

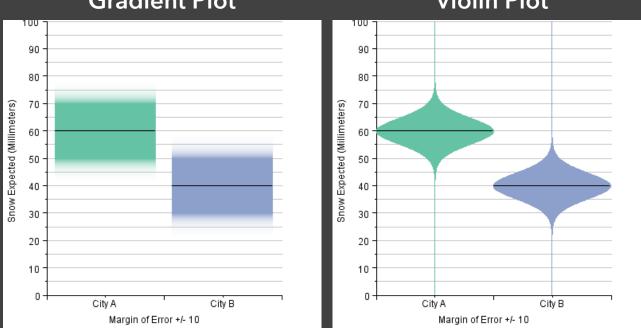


95% CIs for regression model parameters.

Here, we compare fitted parameters from 3 different models. Not all predictors are included in all models.

Visual comparison: does the CI overlap 0?

Alternatives to Error Bars



Gradient Plot

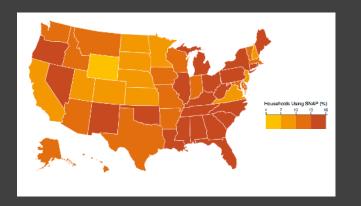
Violin Plot

Visual Encodings of Uncertainty

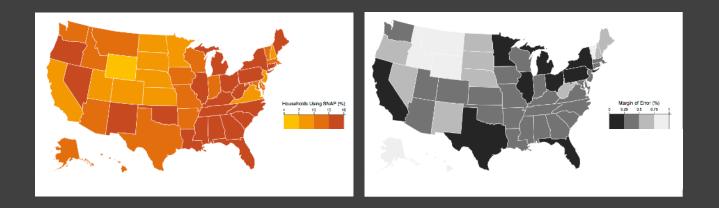
Uncertainty Vis Pipeline

- 1) Quantify uncertainty
- 2) Choose a free visual variable
- 3) Encode uncertainty with the variable

Data Map



Data Map Uncertainty Map



Uncertainty Vis Pipeline

- 1) Quantify uncertainty
- 2) Choose a free visual variable
- 3) Encode uncertainty with the variable

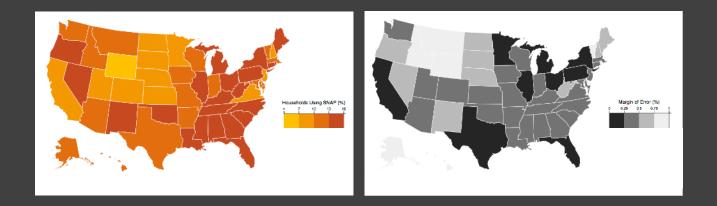
Uncertainty Vis Pipeline

- Quantify uncertainty
 Choose a free visual variable
- 3) Encode uncertainty with the variable
- 4) Unify the Data Map and Uncertainty Map

How to Unify?

Data Map

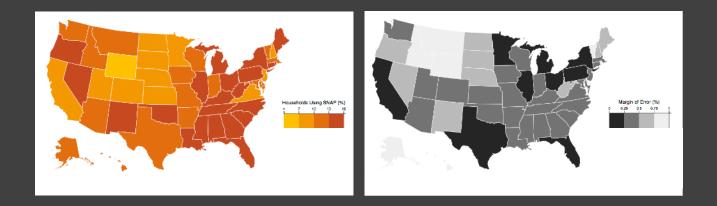
Uncertainty Map



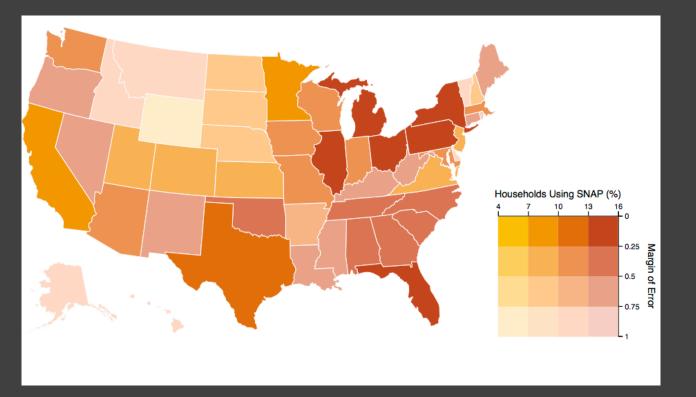
Juxtaposition

Data Map

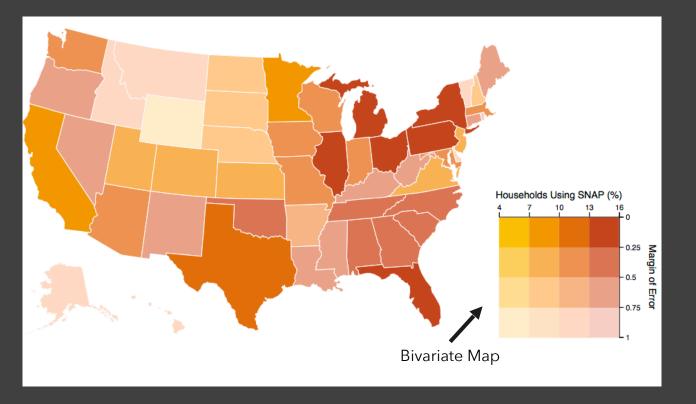
Uncertainty Map



Superposition



Superposition



Uncertainty Vis Pipeline

- Quantify uncertainty
 Choose a free visual variable
- 3) Encode uncertainty with the variable
- 4) Unify the Data Map and Uncertainty Map

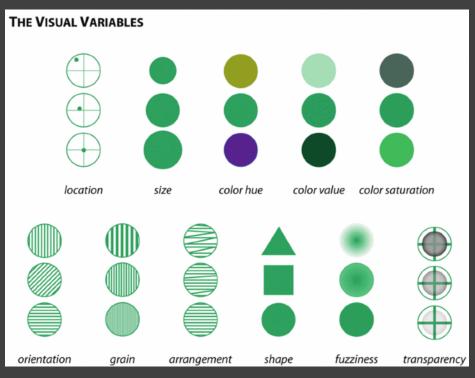
Uncertainty Vis Pipeline

Quantify uncertainty
 Choose a free visual variable
 Encode uncertainty with the variable
 Unify the Data Map and Uncertainty Map

Semiotics of Uncertainty

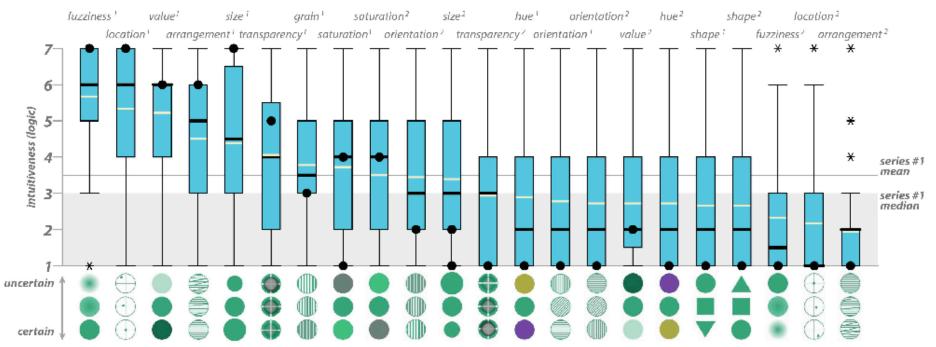
Semiotics of Uncertainty

Semiotics of Uncertainty

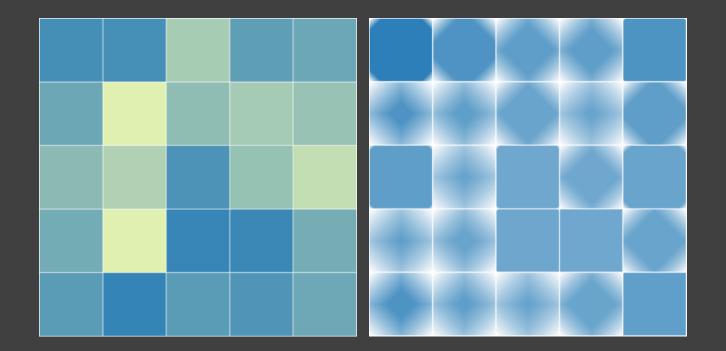


MacEachren et al. Visual Semiotics & Uncertainty Visualization: An empirical study. IEEE VIS, 2012.

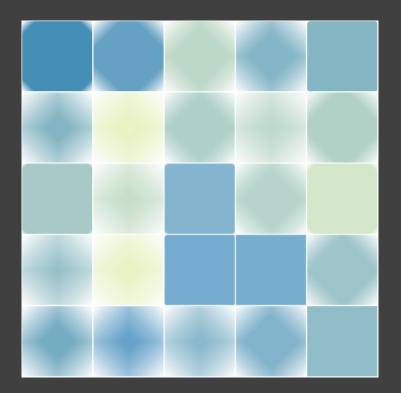
SERIES #1: GENERAL UNCERTAINTY BY VISUAL VARIABLE



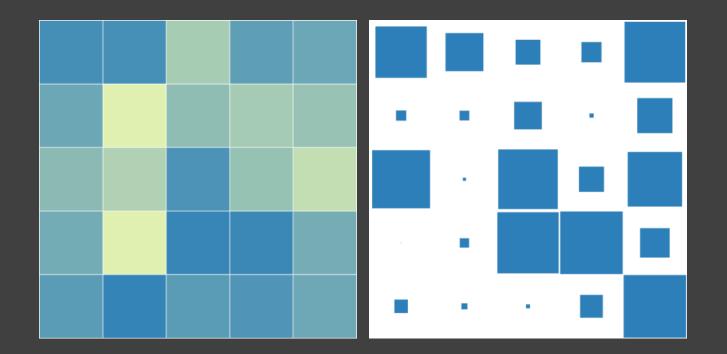
Fuzziness Juxtaposition



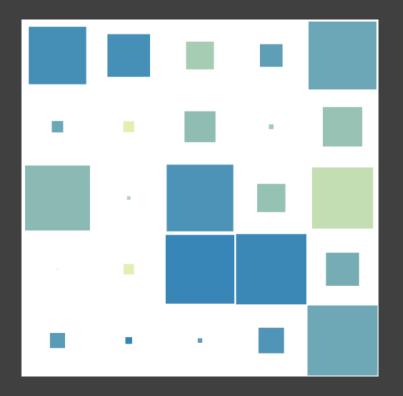
Fuzziness Superposition



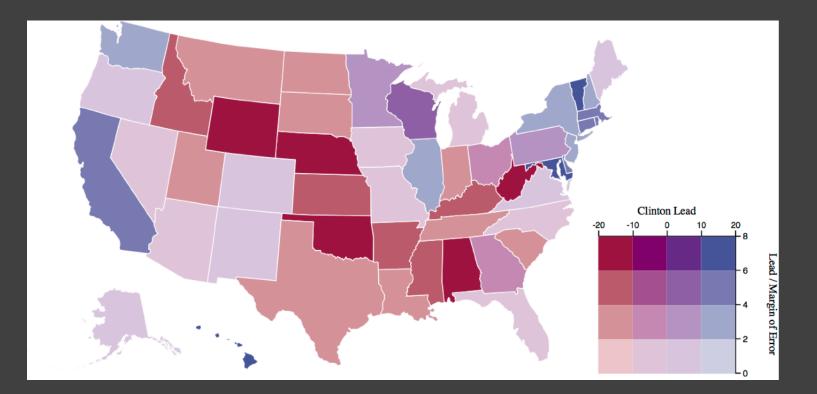
Size Juxtaposition



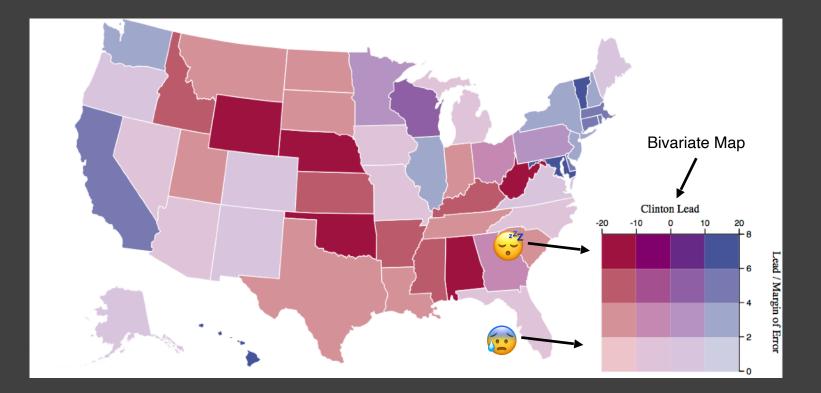
Size Superposition



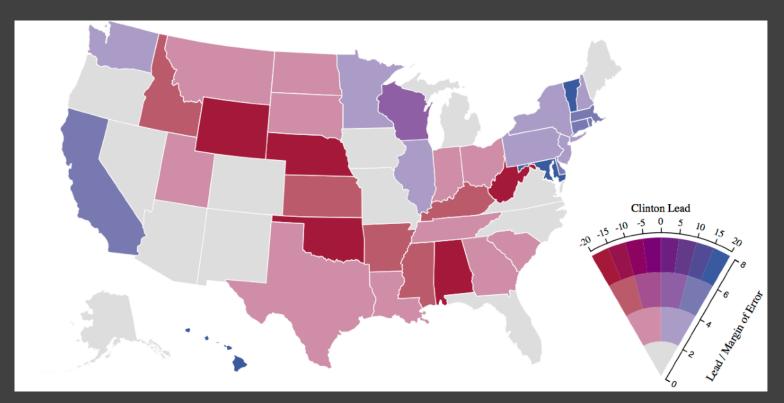
Value Suppressing Uncertainty Palettes



Bivariate Map

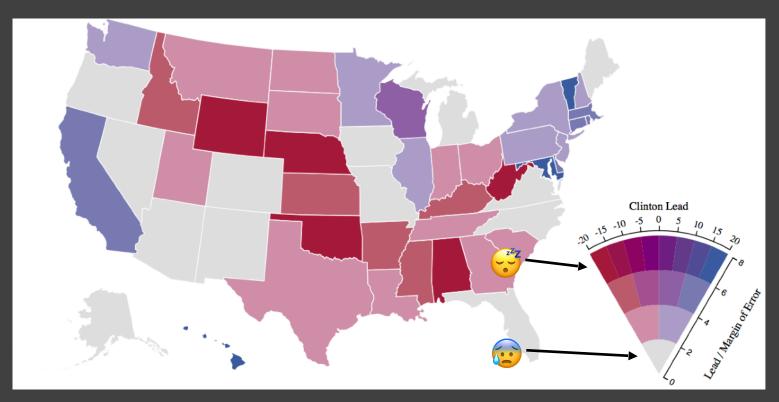


Value Suppressing Uncertainty Palettes



Correll, Moritz & Heer. "Value-Suppressing Uncertainty Palettes." CHI 2018.

Value Suppressing Uncertainty Palettes



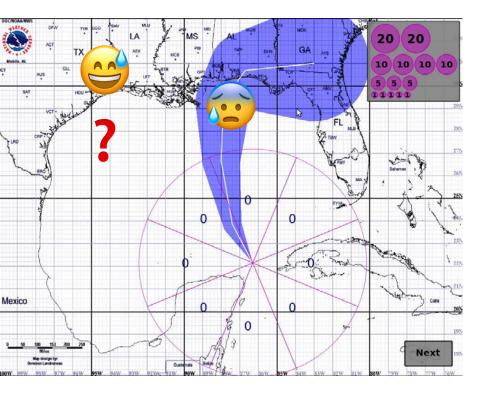
Correll, Moritz & Heer. "Value-Suppressing Uncertainty Palettes." CHI 2018.

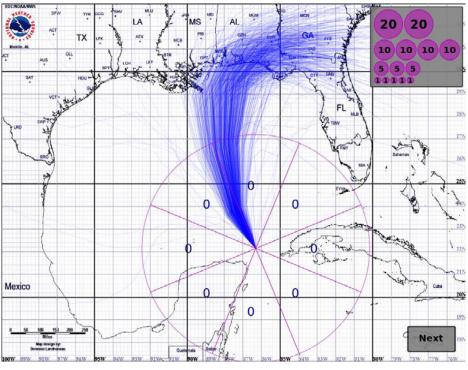
Encoding Uncertainty

Some visual variables (like fuzziness and value) have a **semiotic connection** to uncertainty.

However, intuitive variables may not always be accurately interpreted!

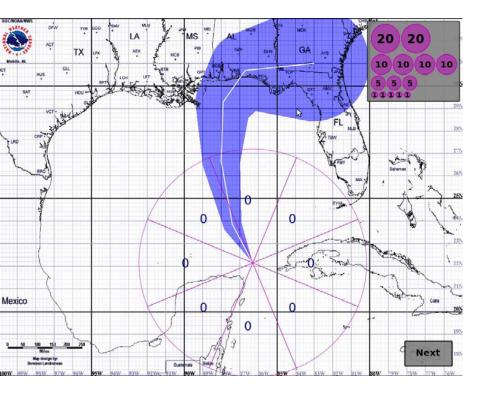
Frequency Framing & Hypothetical Outcomes

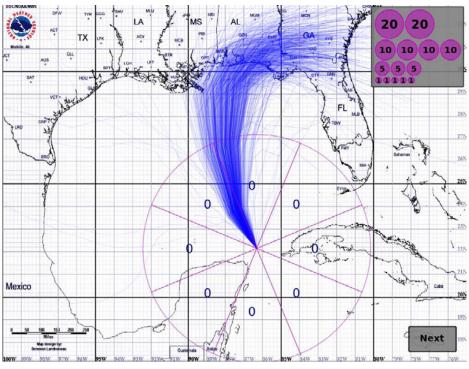




Case 1

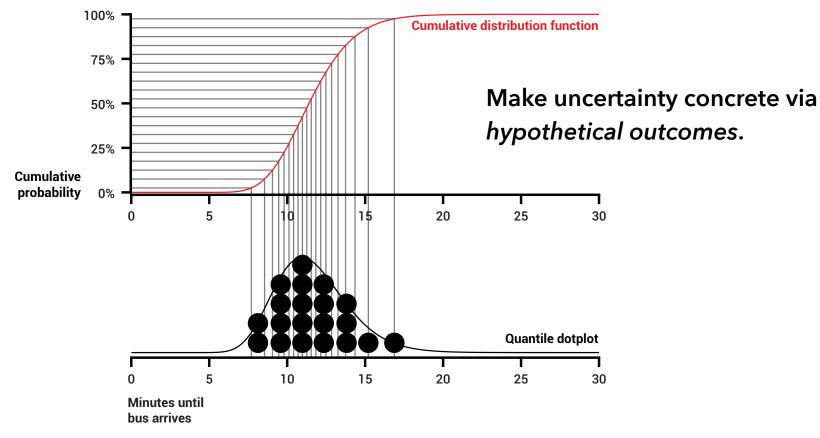
Size or likelihood of hurricane? Is New Orleans safe?



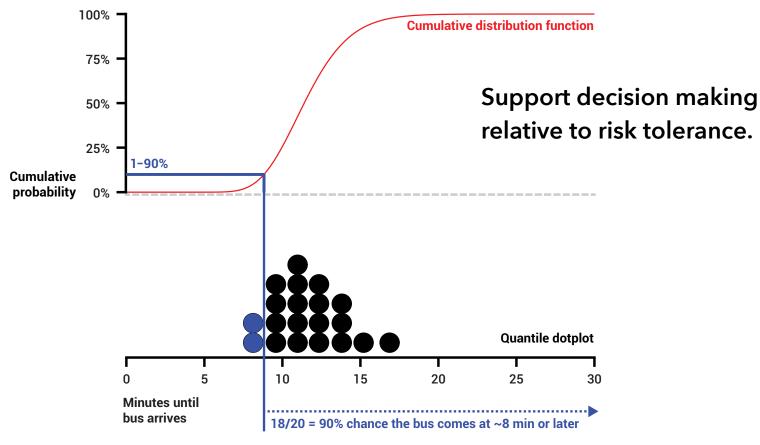


Size or likelihood of hurricane? Is New Orleans safe? Make uncertainty more concrete via *hypothetical outcomes*.

Predicted Bus Arrival Times

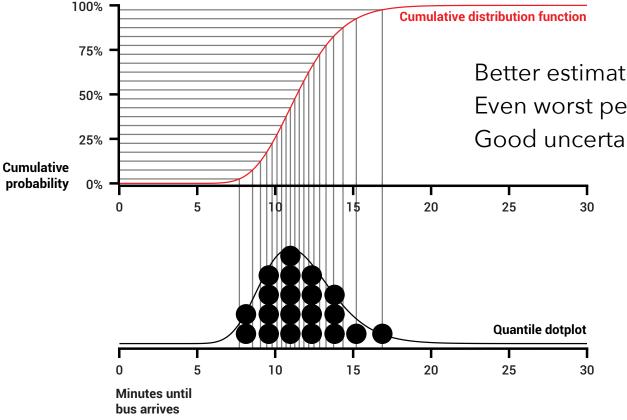


Predicted Bus Arrival Times



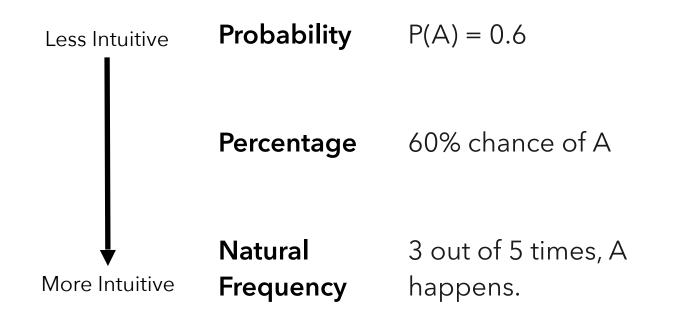
[Kay et al. 2016]

Predicted Bus Arrival Times

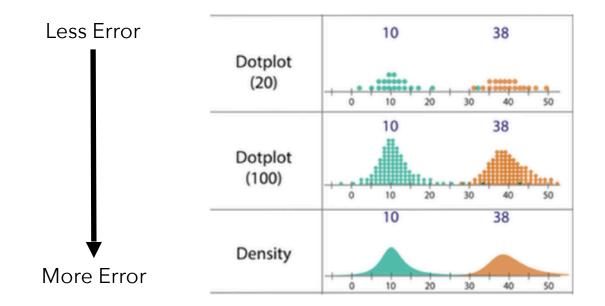


Better estimates, decisions with time. Even worst performers improve. Good uncertainty displays possible!

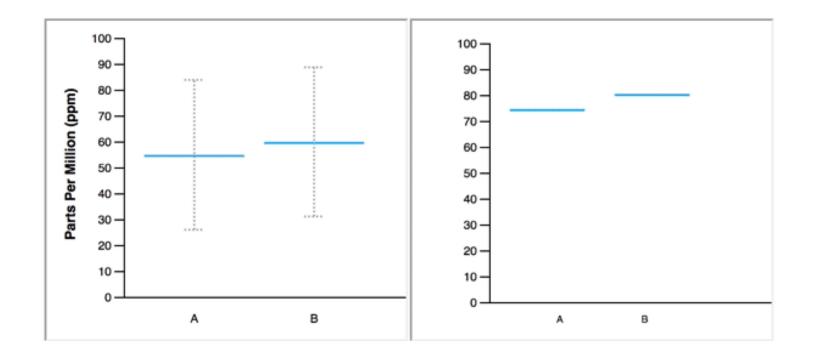
How to Present Probabilities



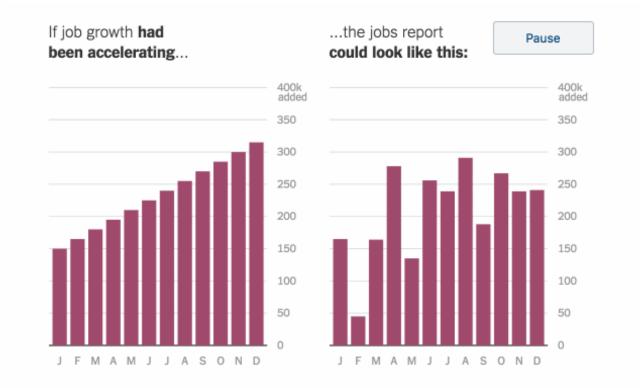
Quantile Dot Plots



Hypothetical Outcome Plots



Hypothetical Outcome Plots



[NYTimes, 2014]

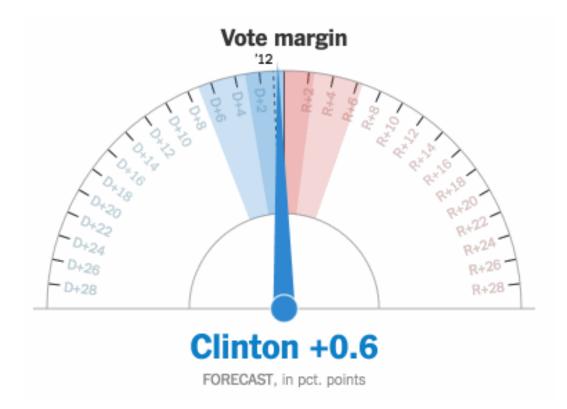
Hypothetical Outcomes

If the economy actually added 150,000 jobs last month, it would be possible to see any of these headlines:

The jobs number is just an estimate, and it comes with uncertainty.

Job Growth Plummets Amid Prospect Of New Slump	Disappointing Jobs Report Raises Economic Worries	Slower Job Creation Disappoints Economists	Job Growth Steady, New Report Says	Job Creation Accelerates In Sign Of Economy Improving	Job Growth Robust, Pointing To Economy Surging
Under 55,000 jobs	55,000 to 110,000	110,000 to 140,000	160,000 to 190,000	190,000 to 245,000	245,000+
4% chance	19% chance	19% chance	19% chance	19% chance	4% chance

The NY Times Needle



[NYTimes, 2016]

How Should I Visualize Uncertainty?

Choose an appropriate visual variable based on the domain, literacy, and expertise of your audience. Be mindful that any display of uncertainty inherently increases the complexity of your visualization, and that there is a preference/performance gap.

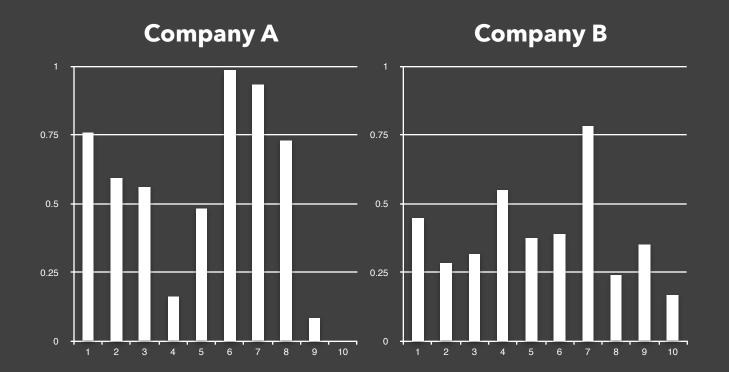
How Should I Visualize Uncertainty?

Choose an appropriate visual variable based on the domain, literacy, and expertise of your audience. Be mindful that any display of uncertainty inherently increases the complexity of your visualization, and that there is a preference/performance gap.

What Can Go Wrong?

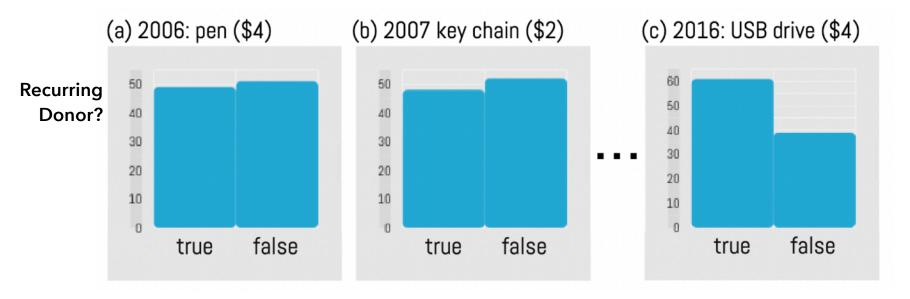
Inferential Integrity

Which Stock To Buy?



Neither!

What Swag Should We Send? [Zgraggen et al. '18]



What Swag Should We Send? [Zgraggen et al. '18]

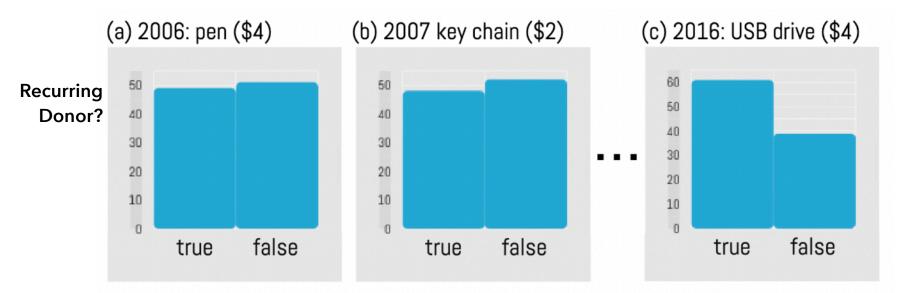
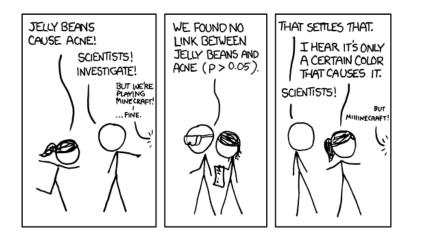
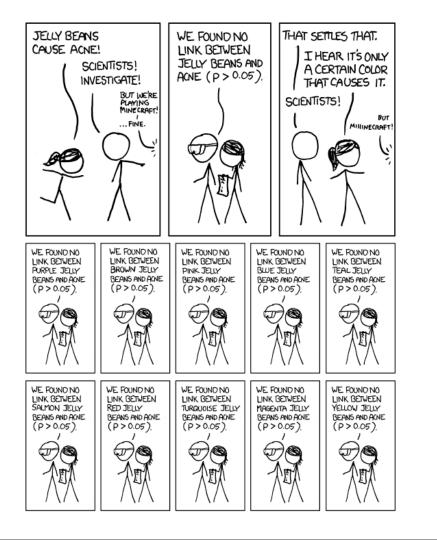
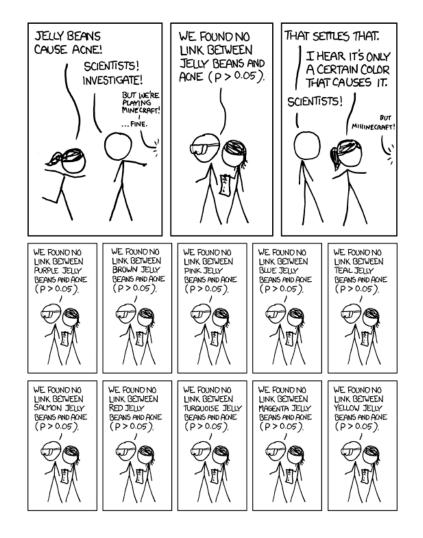
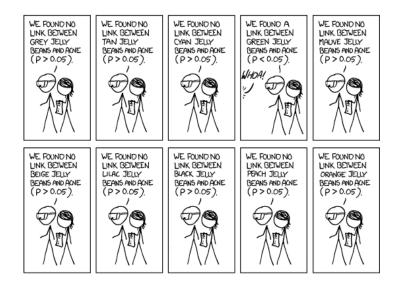


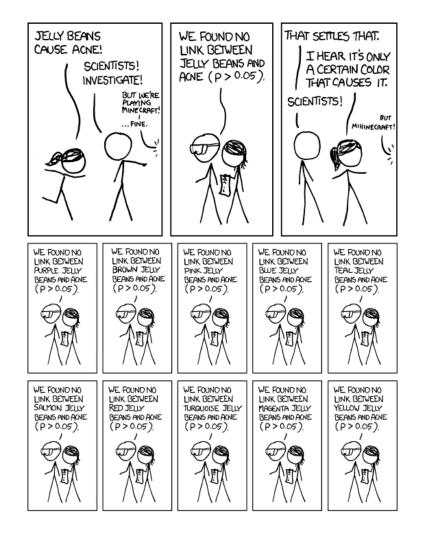
Figure 1. A user inspects several graphs and wrongly flags (c) as an insight because it looks different than (a) and (b). All were generated from the same uniform distribution and are the "same". By viewing lots of visualizations, the chances increase of seeing an apparent insight that is actually the product of random noise.

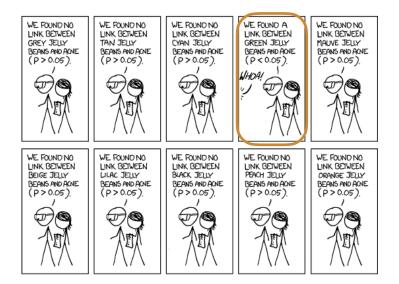


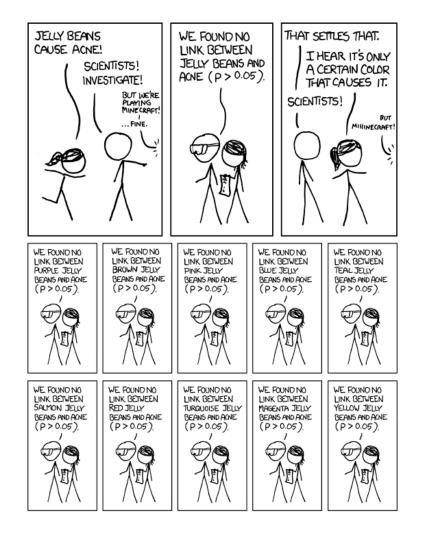


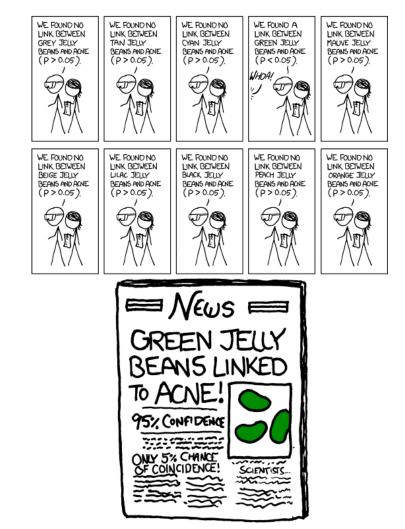


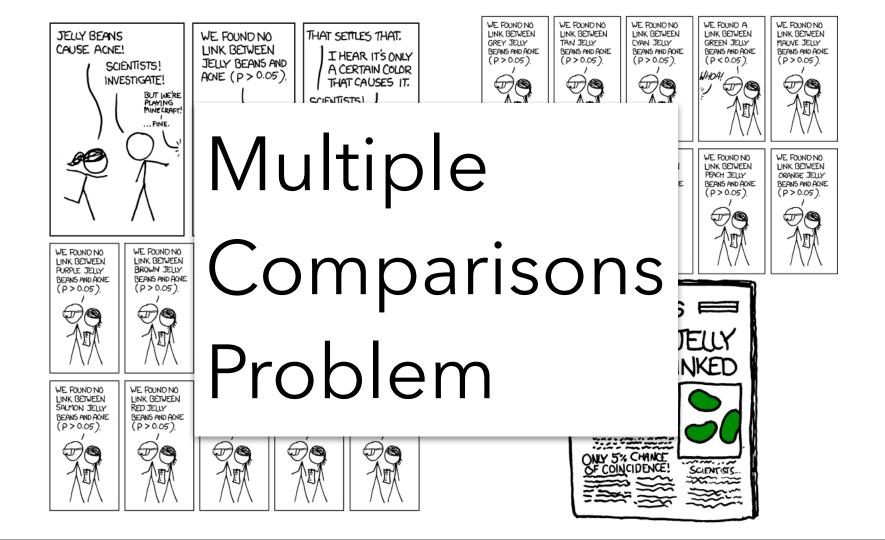




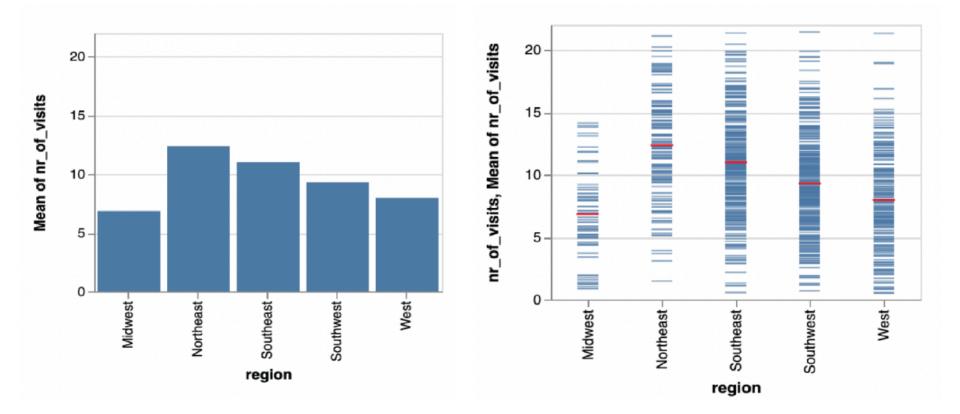




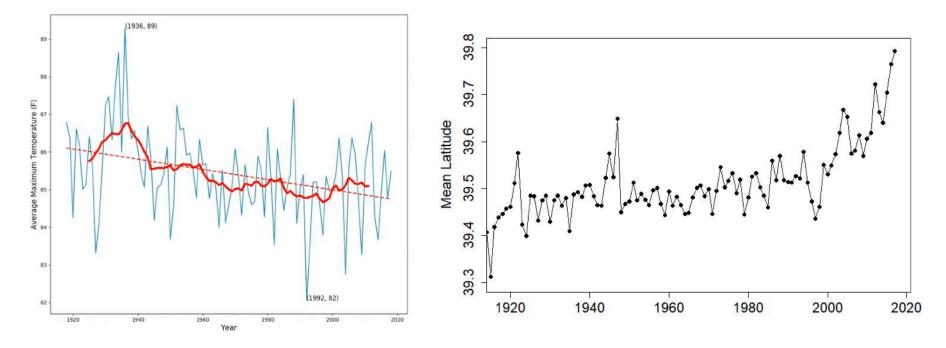




Aggregated vs. Disaggregated Views [Nguyen et al. '20]



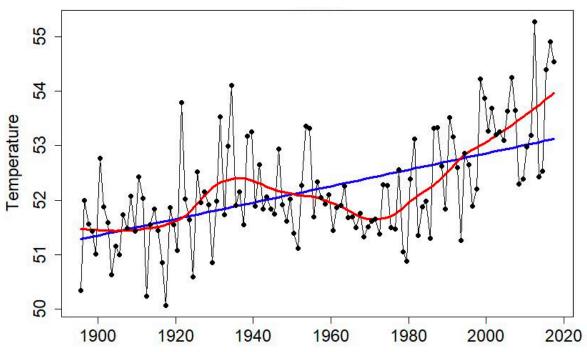
Example: Is the U.S. cooling?



Starts at 1918. Summer temps only. Raw average over weather stations. But here is the mean latitude of US weather stations, per year...

tamino.wordpress.com/2018/08/08/usa-temperature-can-i-sucker-you/

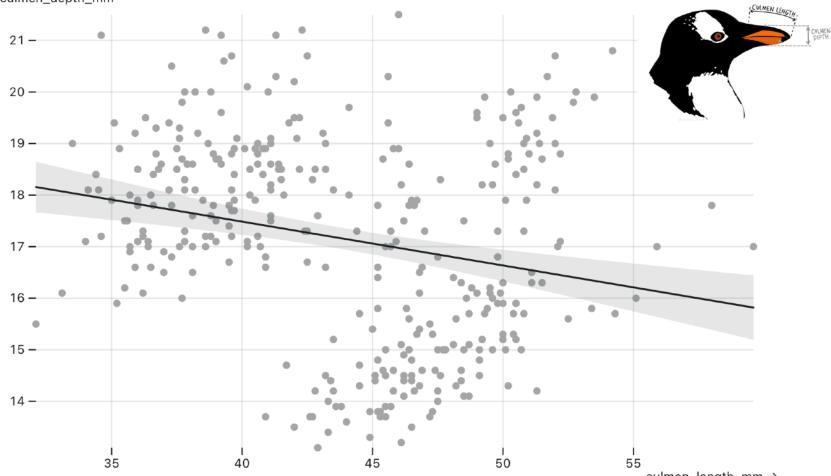
Example: Is the U.S. cooling? (No.)



Include more historical data. Include all four seasons. Correct spatial averages to account for changes in weather station locations.

tamino.wordpress.com/2018/08/08/usa-temperature-can-i-sucker-you/

↑ culmen_depth_mm

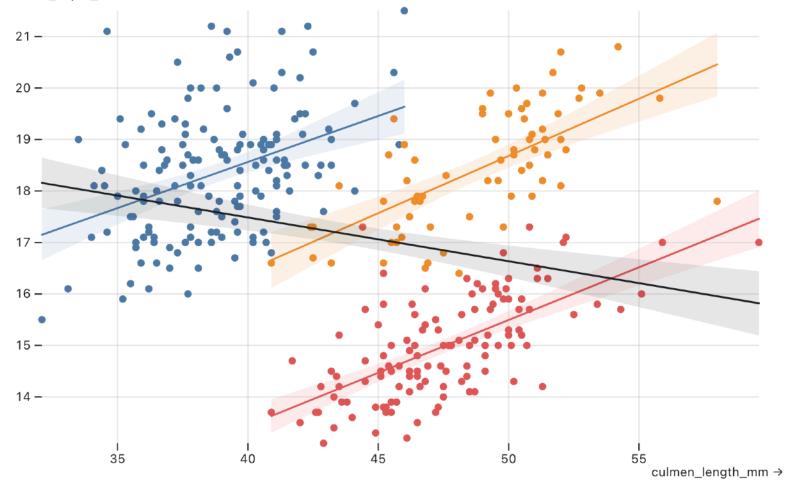


culmen_length_mm →

CULMEN: RIDGE ALONG THE TOP PART OF A BIRD'S BILL

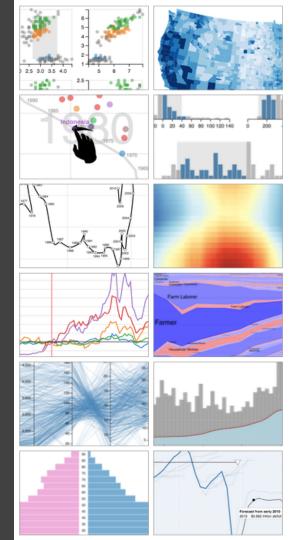
Simpson's Paradox!

↑ culmen_depth_mm

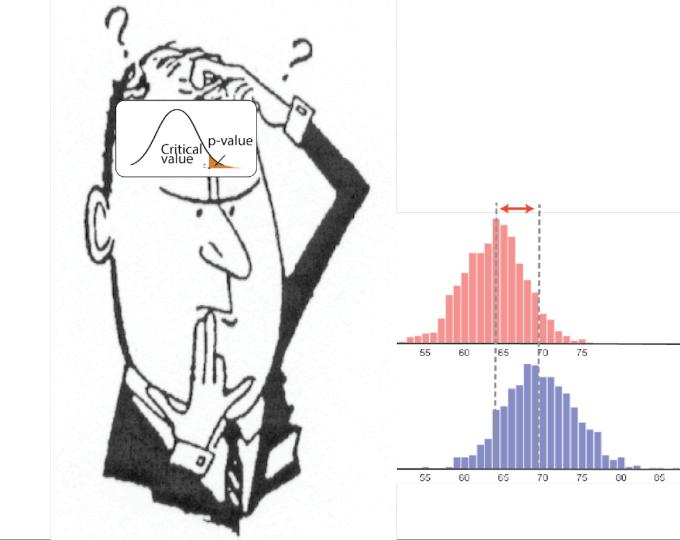


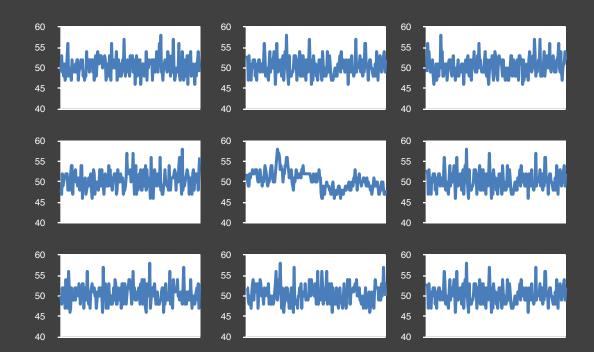
Some Causes of Inferential Failure

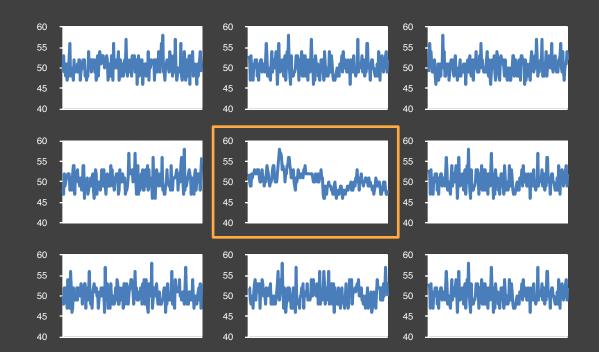
Premature Suppression of Uncertainty False Discovery due to Random Fluctuation Incomplete or Biased Data Confounding Variables



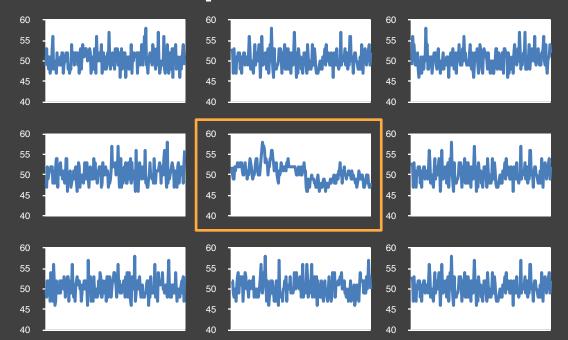
Graphical Inference & Model Checks







Visual Lineups



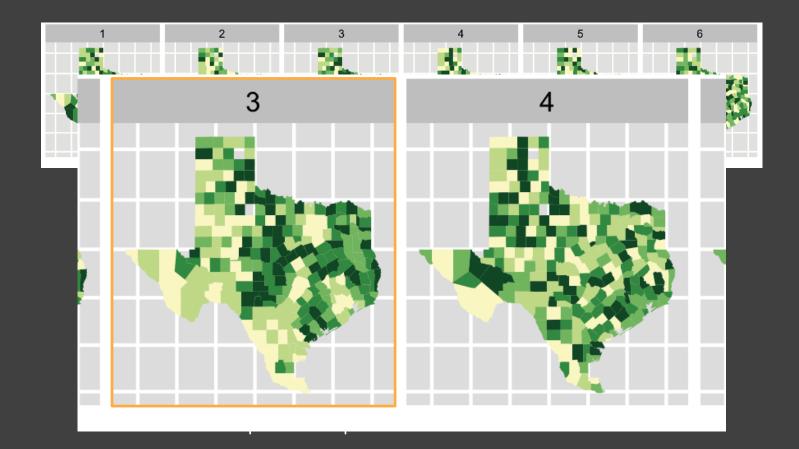


Choropleth maps of cancer deaths in Texas.

One plot shows a real data sets. The others are simulated under the null hypothesis of spatial independence.

Can you spot the real data? If so, you have some evidence of spatial dependence in the data.

Hadley Wickham et al. "Graphical inference for Infovis." IEEE transactions on visualization and computer graphics 16.6 (2010): 973-9.



Graphical Inference

Compare data to replicated data under a model

Can we articulate a possible data generating process? If we model that, how does it compare to our data?

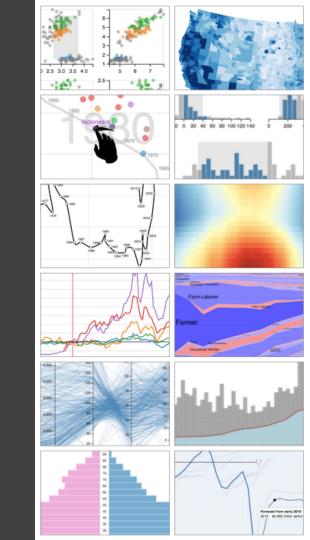
Choose a model for comparison

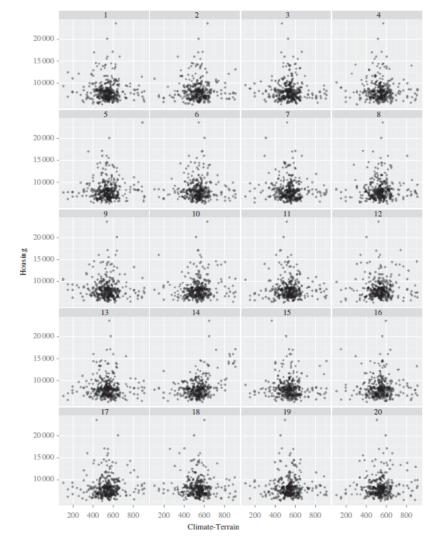
Permute (shuffle) relationship between variables, or Choose a meaningful "null" model

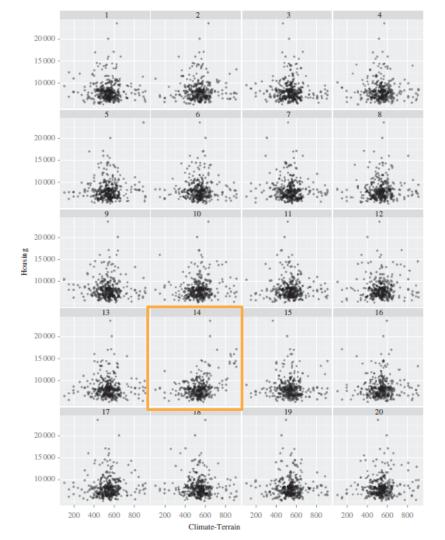
Perform visual comparison

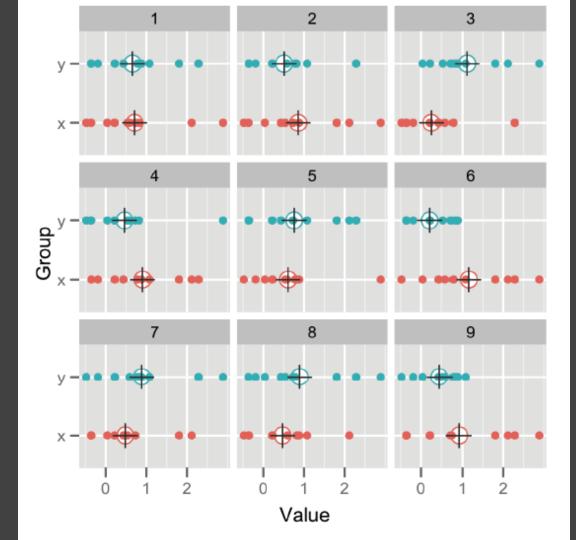
In the "lineup" protocol, we compare the real data against a number of generated variants.

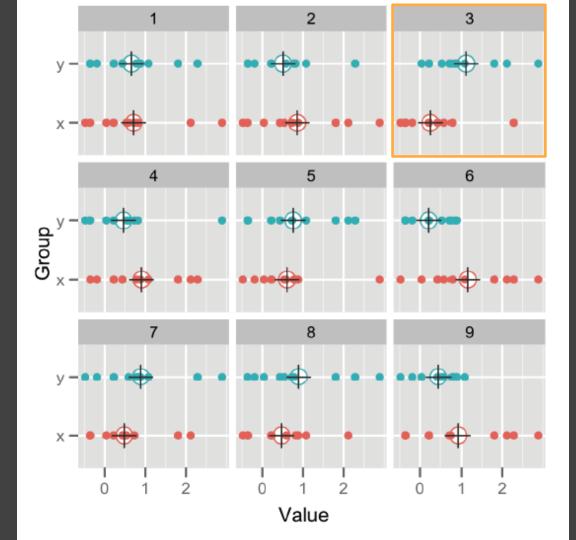
Can we spot the difference?

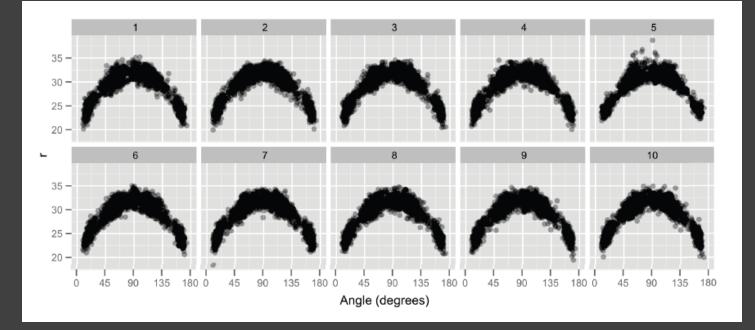






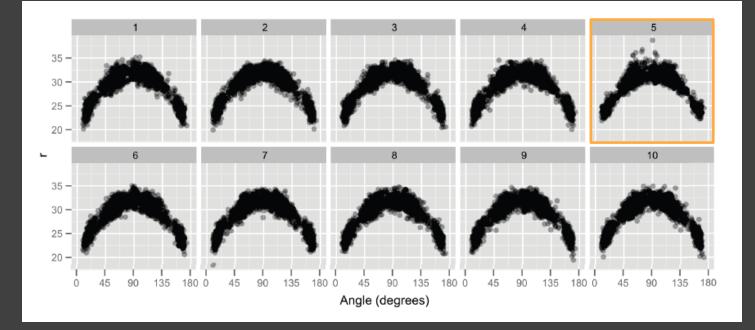






Distance vs. angle for 3 point shots by the LA Lakers.

One plot is the real data. The others are generated according to a null hypothesis of quadratic relationship.



Distance vs. angle for 3 point shots by the LA Lakers.

One plot is the real data. The others are generated according to a null hypothesis of quadratic relationship.

Plot: mpg by origin

.

.

Japan origin ٠

USA

40

30

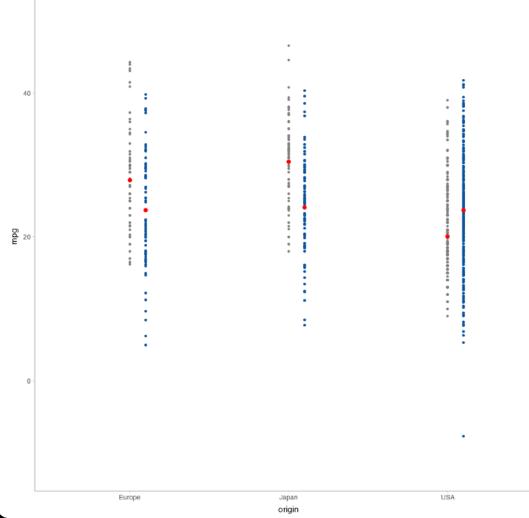
20

10

Europe

mpg

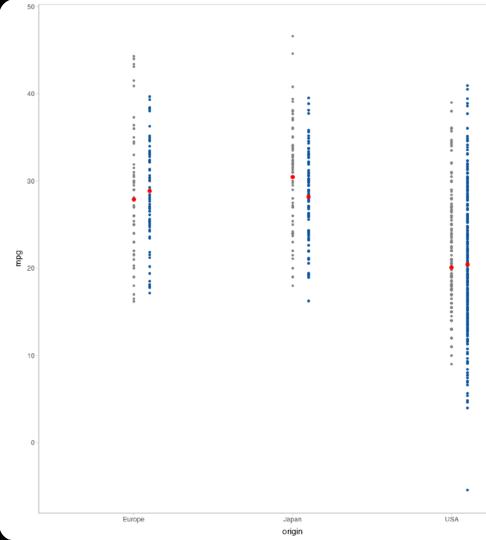
What might our implicit model be?



Model:

mpg ~ 1

Blue points are predictions from a **null model** based on the mean and stdev of the miles per gallon.

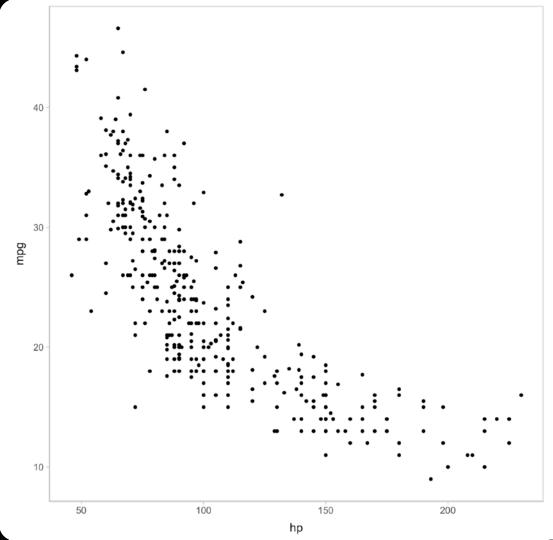


Model: mpg ~ cyl

Blue points are predictions from a model with cylinder count as a predictor.

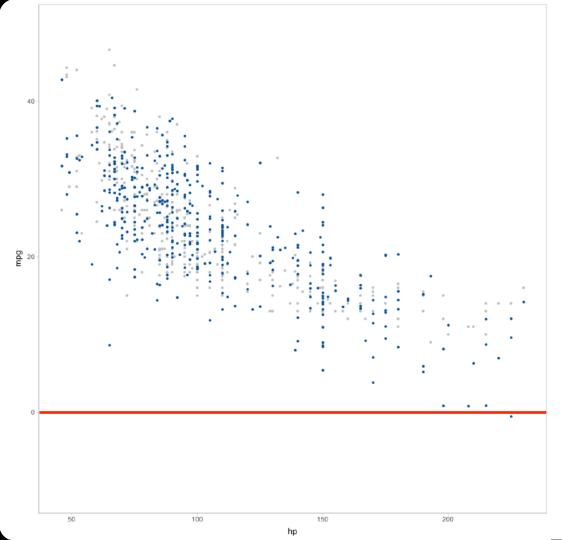
more cylinders → more fuel consumption → worse mileage

Might this explain the differences across regions?



Plot: mpg by hp

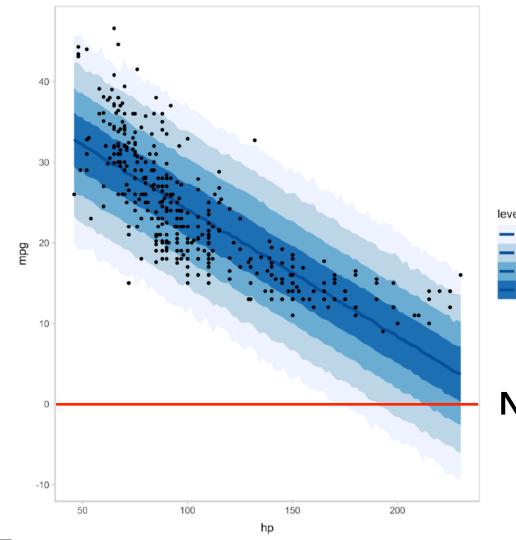
What might our implicit model be?



Model: mpg ~ hp

Linear model, similar to a standard regression. Blue points are model predictions.

Negative mileage?!

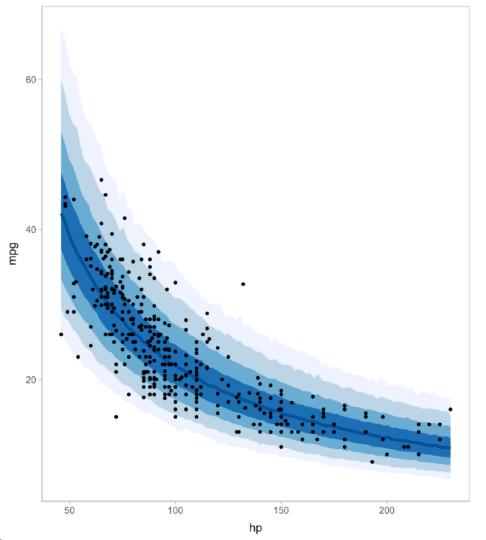


Model: mpg ~ hp

el	Linear model, similar to a
0.99	,
0.95	standard regression.
0.8	etarradia regrecerem
0.5	Bands show Cllovels

Bands show CI levels.

Negative mileage?!



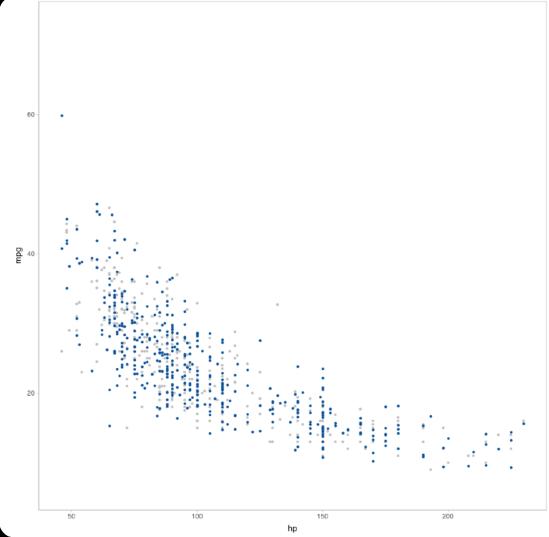
Model: mpg ~ log(hp) family = lognormal

level

0.99

0.8 0.5

0.95 A log-normal model better fits the data and does not "hallucinate" negative values.



Model: mpg ~ log(hp) family = lognormal

A log-normal model better fits the data and does not "hallucinate" negative values.

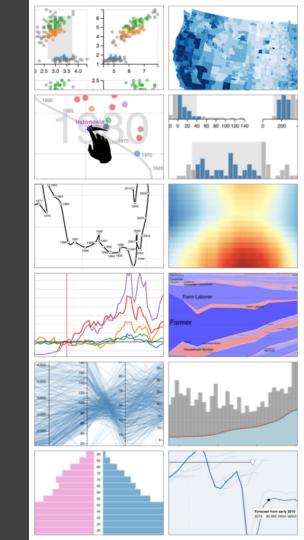
Tools for Model Checks

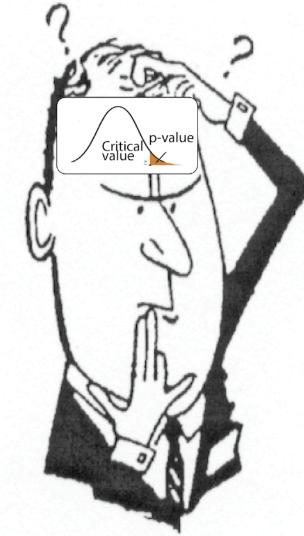
R provides the needed modeling and visualization tools For example:

- brms to fit (Bayesian) models
- **tidybayes** to sample and plot predicted values
- gganimate to create animated HOPs

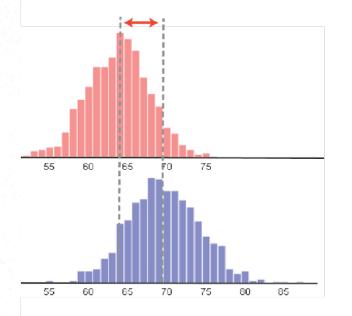
To get started, I recommend the **tidybayes** vignettes: <u>https://mjskay.github.io/tidybayes/</u>

Model checks can be complicated to create and interpret. This is a promising area for innovation!





What might "random" look like? What process generated the data?



What Can Go Wrong?

Uncertainty can be difficult to understand, and require a statistical background and high numeracy. Additionally, cognitive and perceptual biases can result in people making poor or error-prone decisions from uncertain data.

What Can Go Wrong?

Uncertainty can be difficult to understand, and require a statistical background and high numeracy. Additionally, cognitive and perceptual biases can result in people making poor or error-prone decisions from uncertain data.

A LOT

What Does Uncertainty Mean?

LOTS OF THINGS

How Should I Visualize It?

IT DEPENDS

AIOT

What Can Go Wrong?