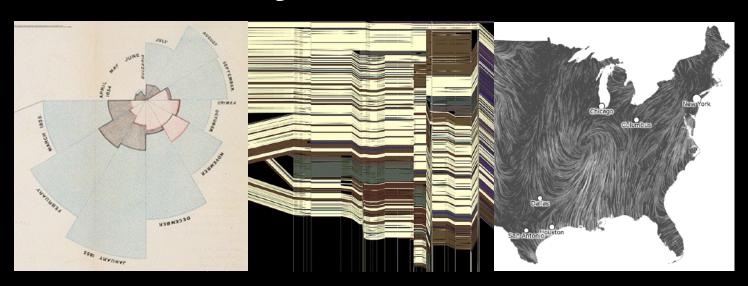
CSE 512 - Data Visualization

Scalability



Jeffrey Heer University of Washington

Session Outline

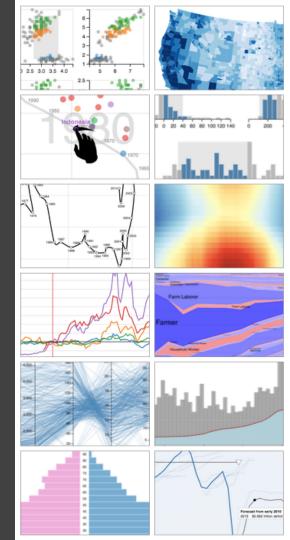
The Varieties of "Big Data"

Scalable Plotting Techniques

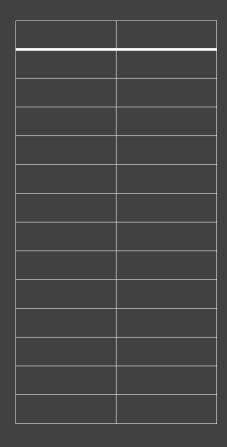
Scalable Interaction

Why Latency Matters

Sampling Methods



The Varieties of "Big Data"



Lots of records

Large DBs have petabytes or more (but median DB still fits in RAM!)

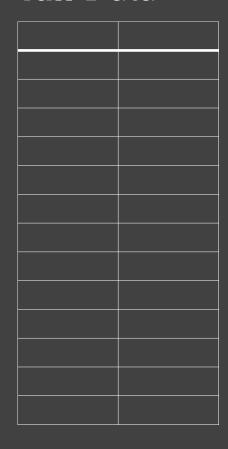
How to manage?

Parallel data processing

Reduction: Filter, aggregate

Sample or approximate

Not just about systems. Consider perceptual / cognitive scalability.



Wide data

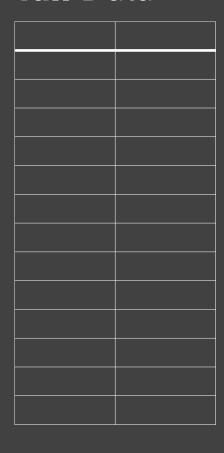
Lots of variables (100s-1000s...)

Select relevant subset

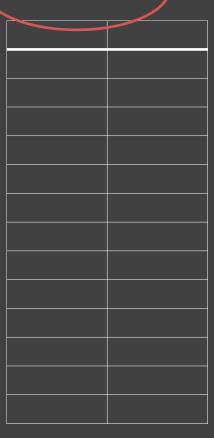
Dimensionality reduction

Statistical methods can suggest and order related variables

Requires human judgment



Wide data



Wide data

Diverse data

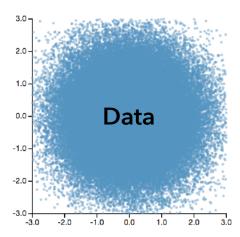
How can we visualize and interact with **billion+ record** databases in real-time?

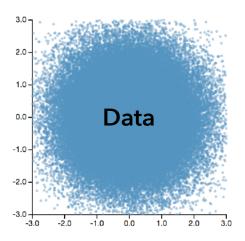
Two Challenges:

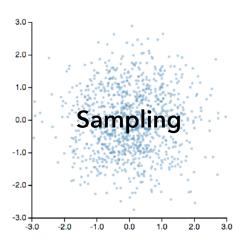
- 1. Effective visual encoding
 - 2. Real-time interaction

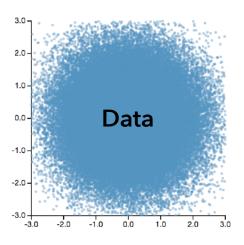
Perceptual and interactive scalability should be limited by the chosen resolution of the visualized data, not the number of records.

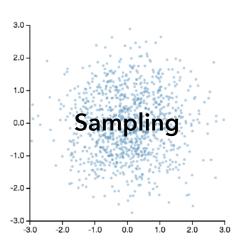
Scalable Plotting Techniques

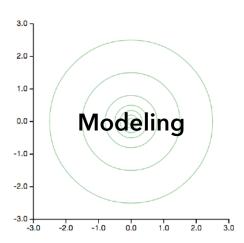


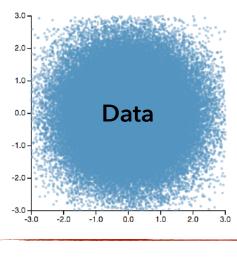


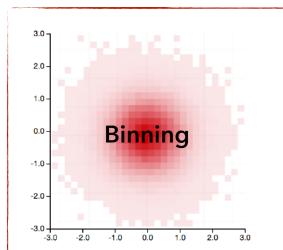


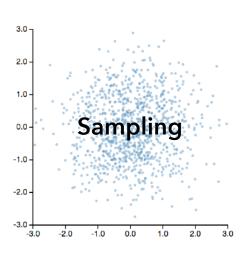


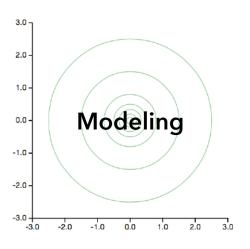




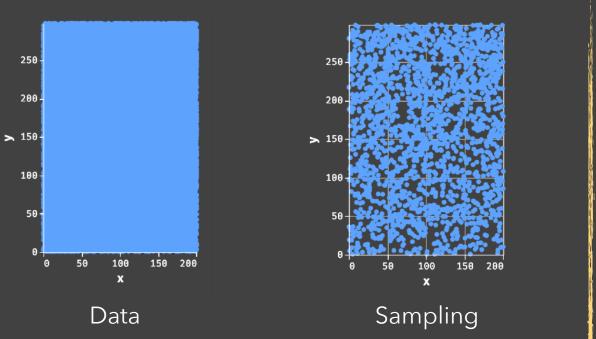


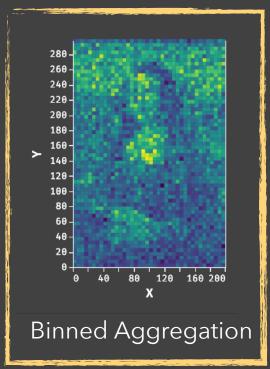






How to **Visualize** a Billion+ Records





Decouple the visual complexity from the raw data through aggregation.

1. Bin Divide data domain into discrete "buckets"

Categories: Already discrete (but watch out for high cardinality)

Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

Geo: Bin x, y coordinates after cartographic projection

1. Bin Divide data domain into discrete "buckets"

Categories: Already discrete (but watch out for high cardinality)

Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

Geo: Bin x, y coordinates after cartographic projection

2. Aggregate Count, Sum, Average, Min, Max, ...

1. Bin Divide data domain into discrete "buckets"

Categories: Already discrete (but watch out for high cardinality)

Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

Geo: Bin x, y coordinates after cartographic projection

- 2. Aggregate Count, Sum, Average, Min, Max, ...
- 3. Smooth Optional: smooth aggregates [Wickham '13]

1. Bin Divide data domain into discrete "buckets"

Categories: Already discrete (but watch out for high cardinality)

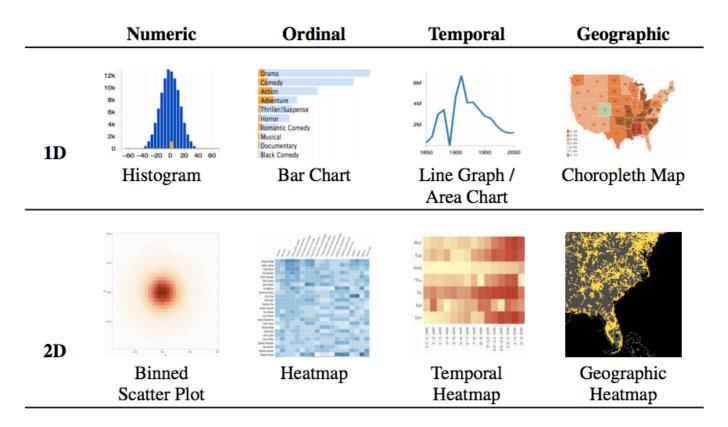
Numbers: Choose bin intervals (uniform, quantile, ...)

Time: Choose time unit: Hour, Day, Month, etc.

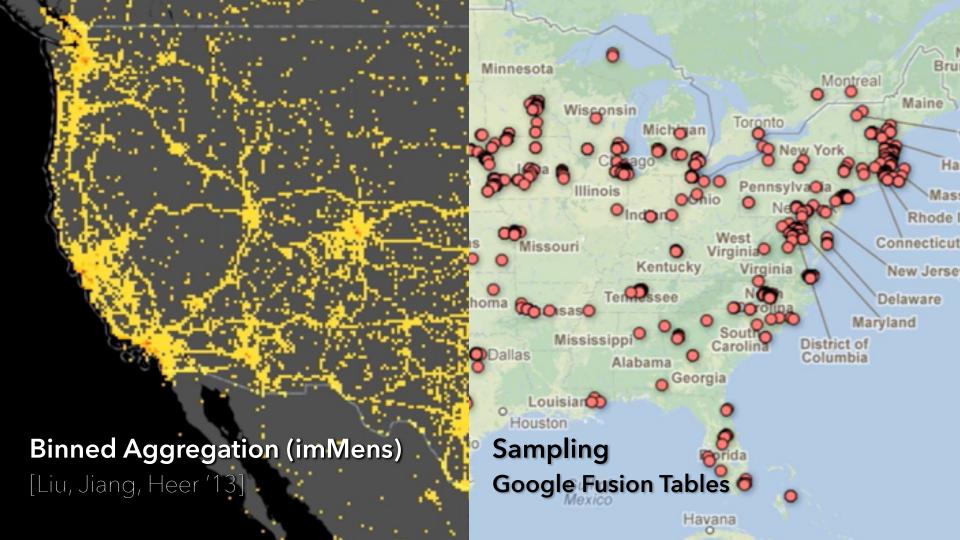
Geo: Bin x, y coordinates after cartographic projection

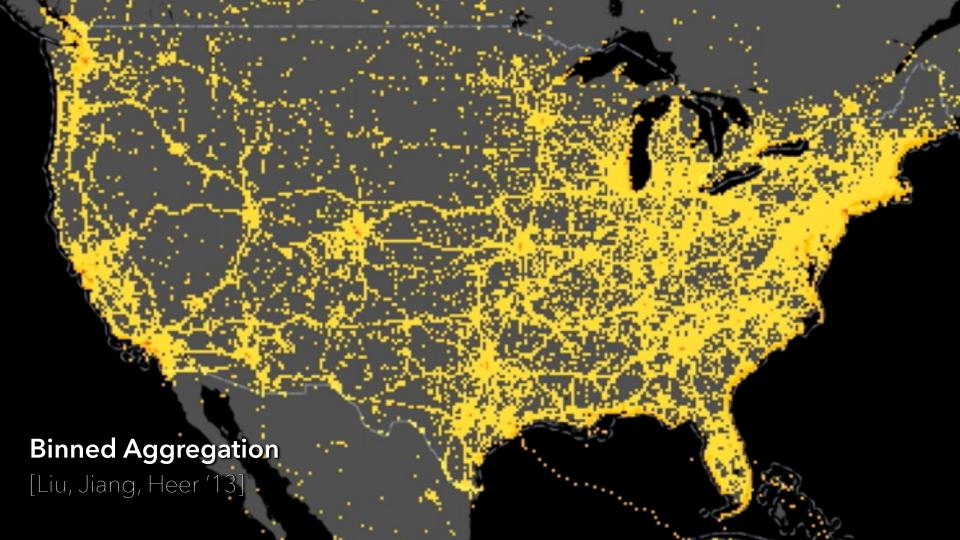
- 2. Aggregate Count, Sum, Average, Min, Max, ...
- 3. Smooth Optional: smooth aggregates [Wickham '13]
- **4. Plot** Visualize the aggregate values

Binned Plots by Data Type

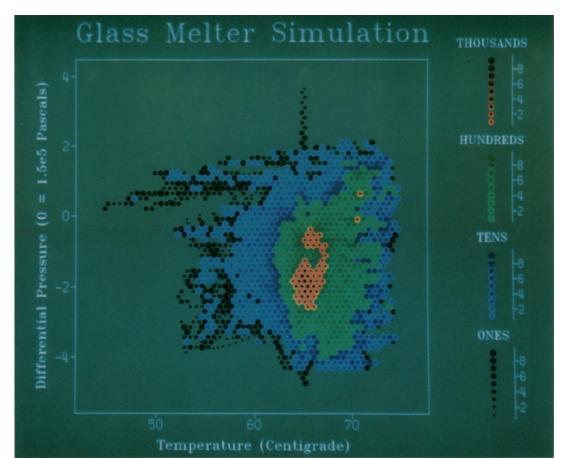


Examples



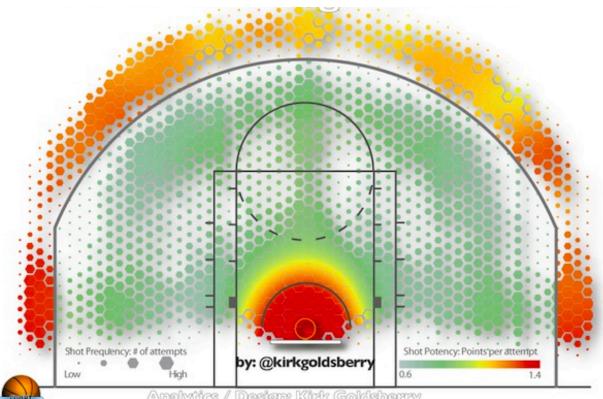


Example: Binned Scatter Plots



Scatterplot
Matrix
Techniques
for Large N
[Carr et al. '87]

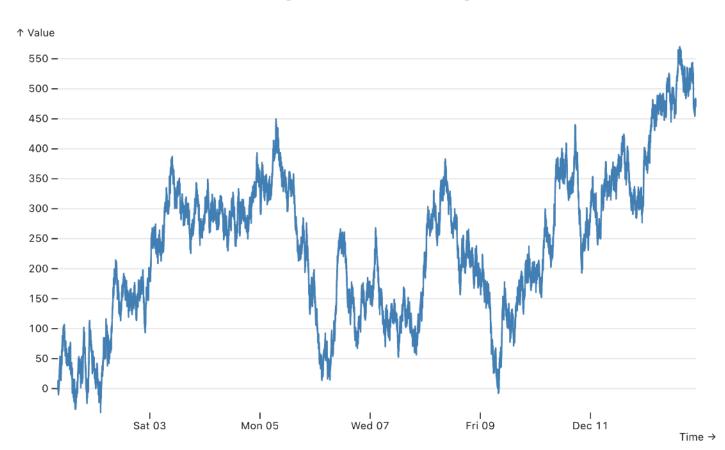
Example: Basketball Shot Chart

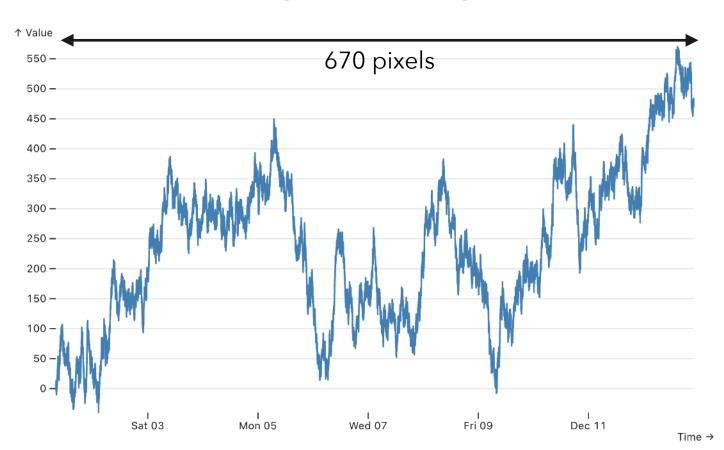


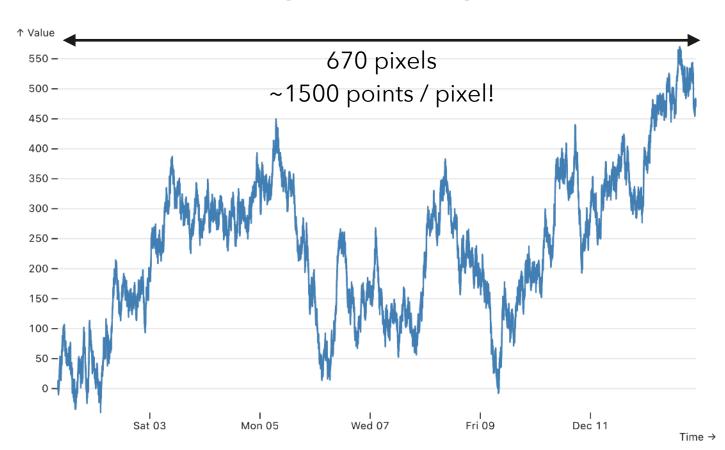
NBA Shooting 2011-12 [Goldsberry]

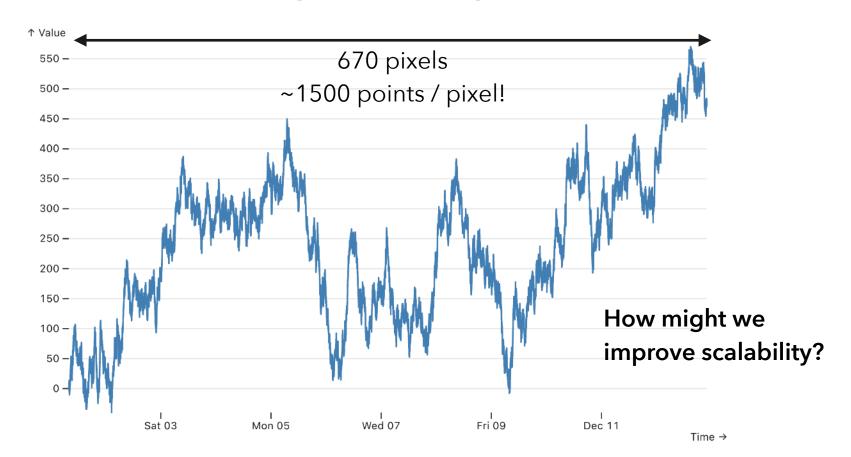
Analytics / Design: Kirk Goldsberry Data Assist Jumpin Matt Adams

Time Series









Insight: the resolution is bound by the number of pixels.

Insight: the resolution is bound by the number of pixels.

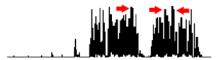
1. Compute average value per pixel (1 point/pixel)

...this may miss extreme (min, max) values

Insight: the resolution is bound by the number of pixels.

- 1. Compute average value per pixel (1 point/pixel) ...this may miss extreme (min, max) values

2. Plot min/max values per pixel (2 points/pixel)



...this does better, but still misrepresents

Insight: the resolution is bound by the number of pixels.

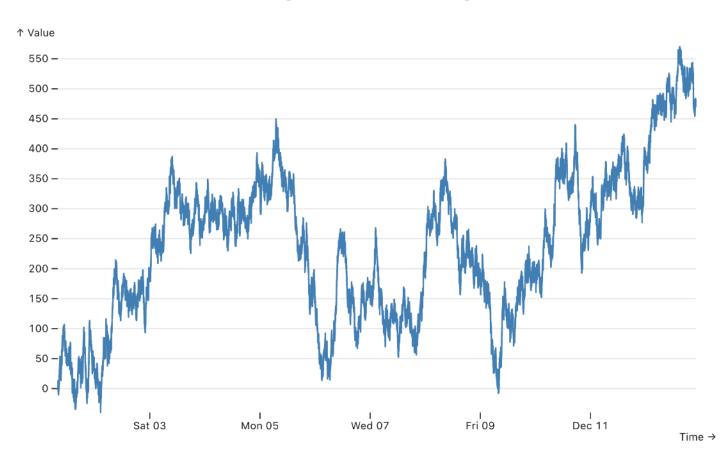
- 1. Compute average value per pixel (1 point/pixel)
 - ...this may miss extreme (min, max) values
- 2. Plot min/max values per pixel (2 points/pixel)
 - ...this does better, but still misrepresents
- 3. M4: min/max values & timestamps (4 points/pixel)

M4 Data Reduction in the Database

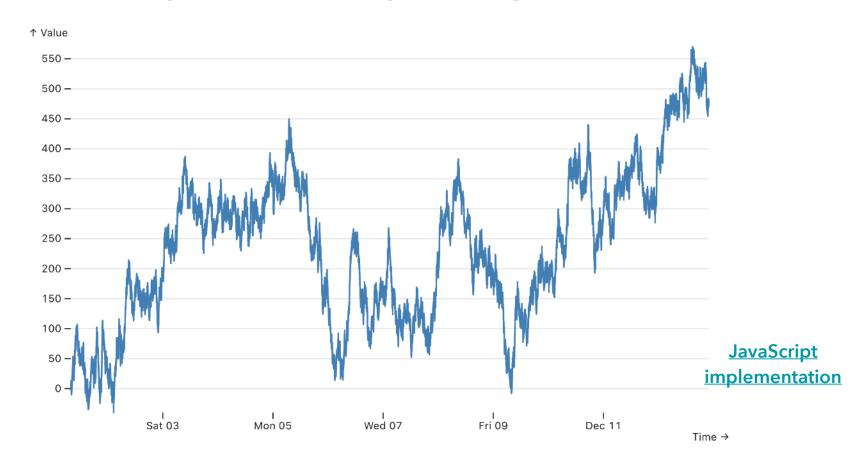
```
SELECT min(t), arg_min(v,t) FROM Q GROUP BY $pixel UNION SELECT max(t), arg_max(v,t) FROM Q GROUP BY $pixel UNION SELECT arg_min(t,v), min(v) FROM Q GROUP BY $pixel UNION SELECT arg_max(t,v), max(v) FROM Q GROUP BY $pixel
```

```
Q: query that returns a time series (t,v)
$t1, $t2: global min/max timestamps
$w: chart width in pixels
$pixel = floor($w(t-$t1)/($t2-$t1))
```

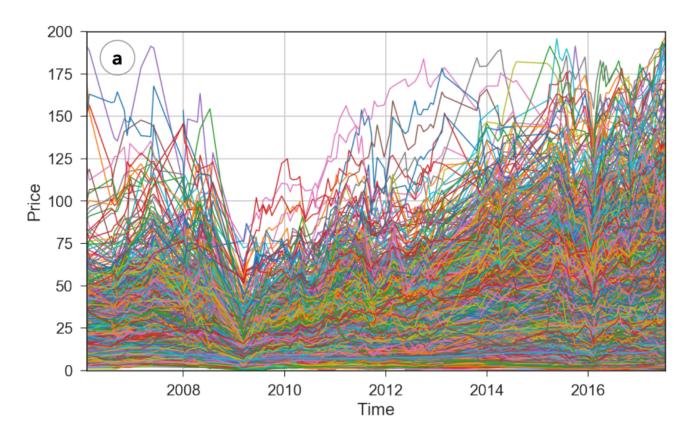
Time Series: 1M samples, 1 sample/second



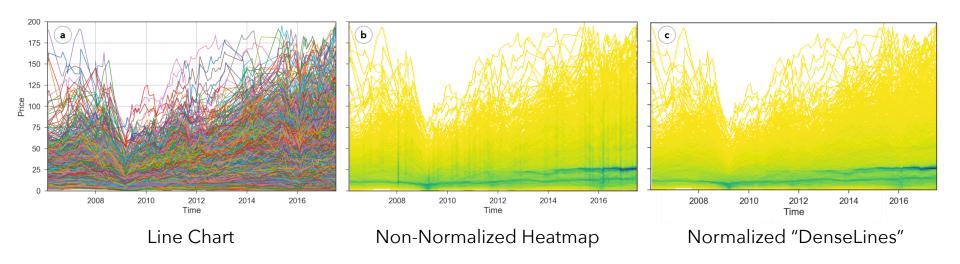
M4: 1M samples -> 2,653 plotted points



But what about multiple time-series?

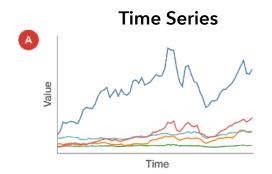


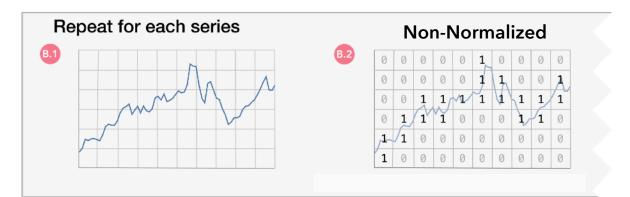
Perceptual scalability breaks down...

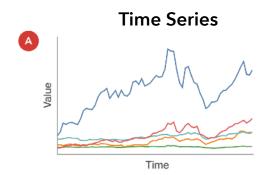


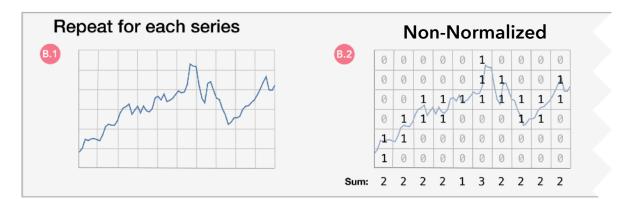
The non-normalized heatmap suffers from artifacts, seen as vertical stripes.

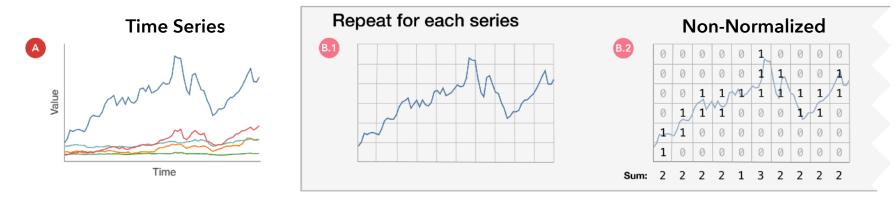
Binned charts convey high points across the top, a collective dip in stocks during the crash of 2008, and two distinct bands of \$25 and \$15 stocks.





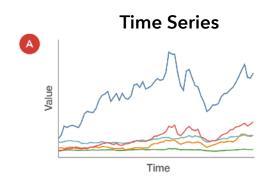


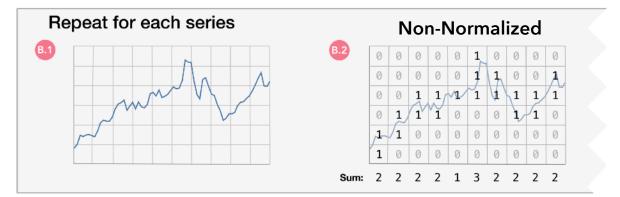


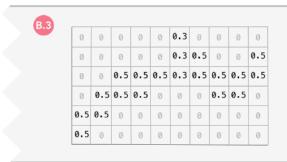


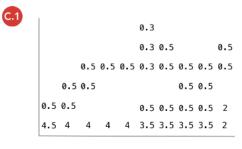
B.3	0	0	0	0	0	0.3	0	0	0	0
	0	0	0	0	0	0.3	0.5	0	0	0.5
	0	0	0.5	0.5	0.5	0.3	0.5	0.5	0.5	0.5
	0	0.5	0.5	0.5	0	0	0	0.5	0.5	0
	0.5	0.5	0	0	0	0	0	0	0	0
	0.5	0	0	0	0	0	0	0	0	0

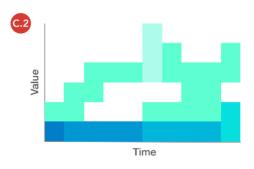
Approx. Arc-Length Normalized







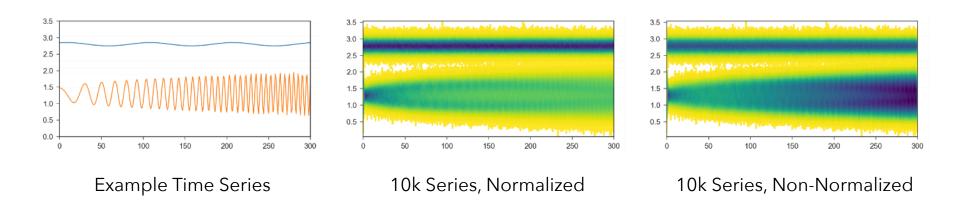




Approx. Arc-Length Normalized

Aggregate

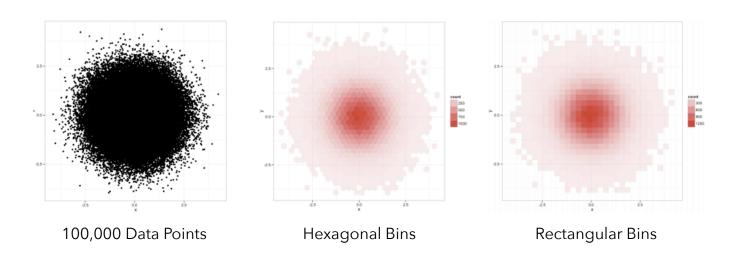
Color



The density of the second group appears to increase to the right! Without normalization, the steep lines are over-represented.

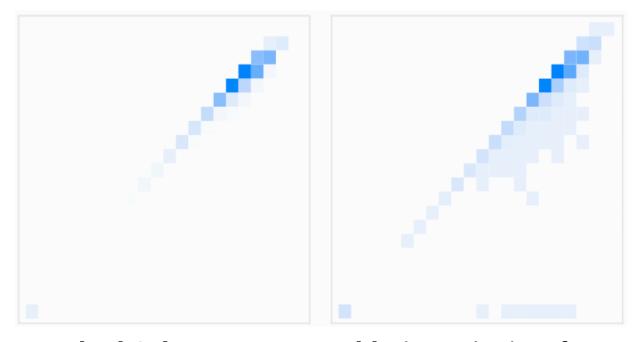
Design Subtleties

Hexagonal or Rectangular Bins?



Hex bins better estimate density for 2D plots, but the *improvement is marginal* [Scott 92]. Rectangles support *reuse* and *visual queries*.

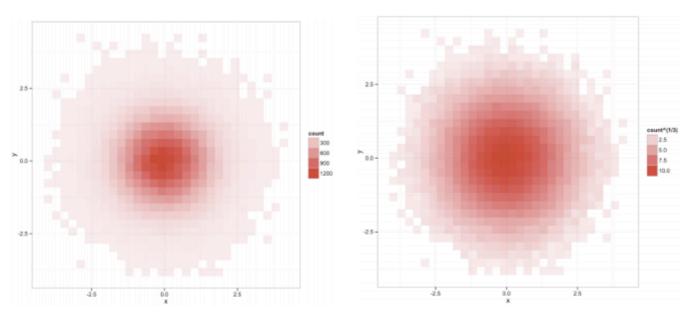
Color Scale: Discontinuity after Zero



Standard Color RampCounts near zero are white.

Add Discontinuity after Zero Counts near zero remain visible.

Color Ramps / Scale Transforms



Linear interpolation in RGBA is not perceptually linear.

Perceptual color spaces approximate perceptual linearity.

Questions?

Administrivia

Final Project Schedule

Proposal Fri May 16

Prototype Wed May 28

Demo Video Wed Jun 4

Video Showcase Thu Jun 5 (in class)

Deliverables Mon Jun 9

Logistics

Final project description posted online
Work in groups of up to 4 people
You should be well on your way at this point!

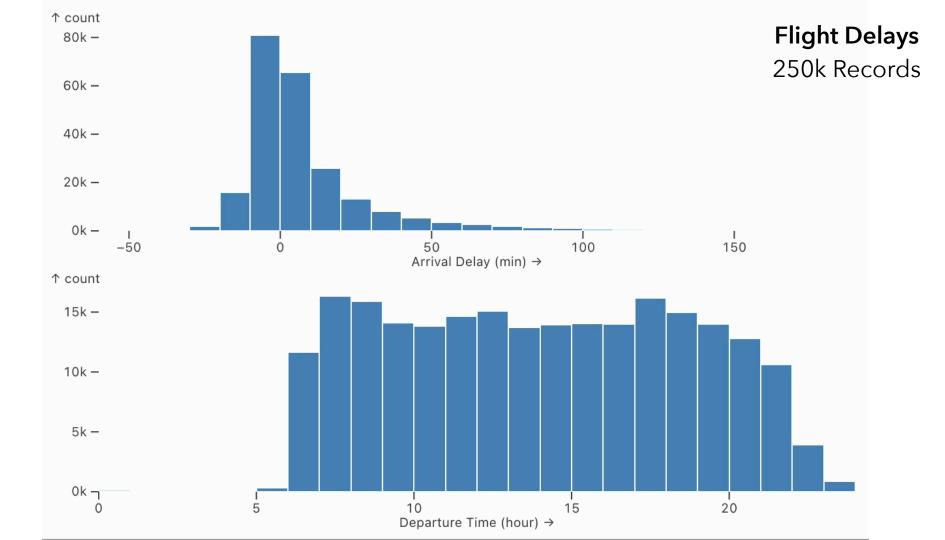
Milestone Prototype

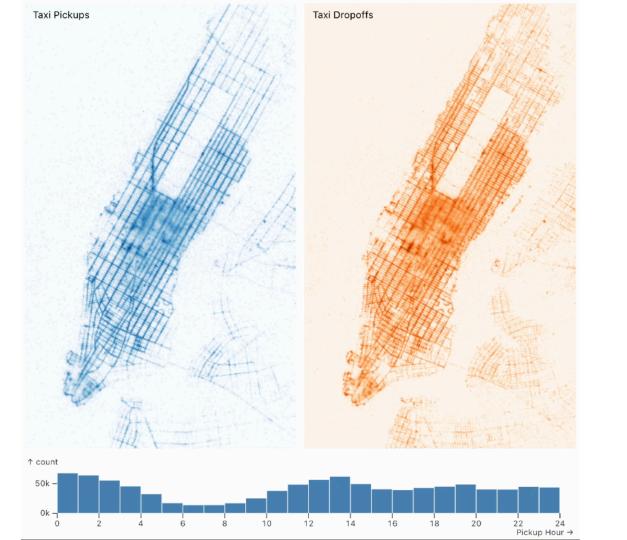
Publish work to GitLab pages for others to examine and share feedback. You **are not** expected to have complete, polished content at this point.

You **are** expected to provide prototype work that communicates your design goals. For example: initial visualizations, sketches, storyboards, and text annotations / idea descriptions.

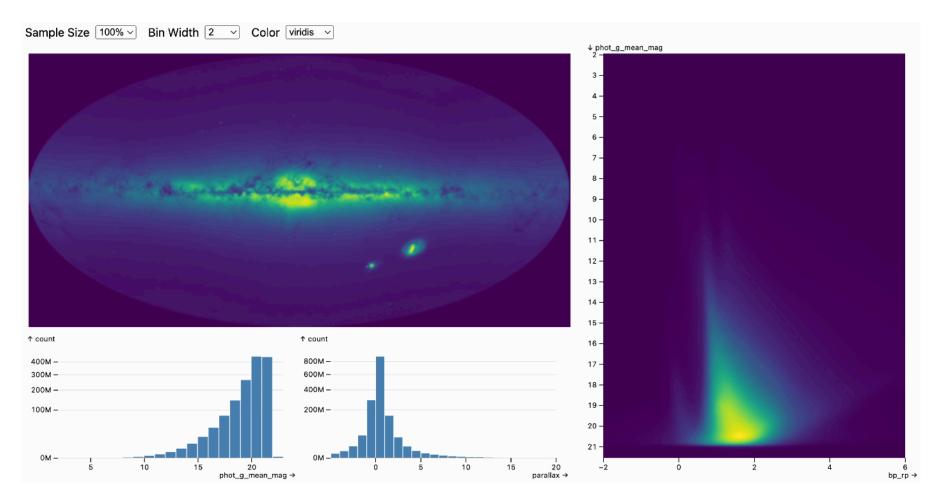
One should get a sense of what you intend to ultimately submit! Also feel free to post questions.

Scalable Interaction

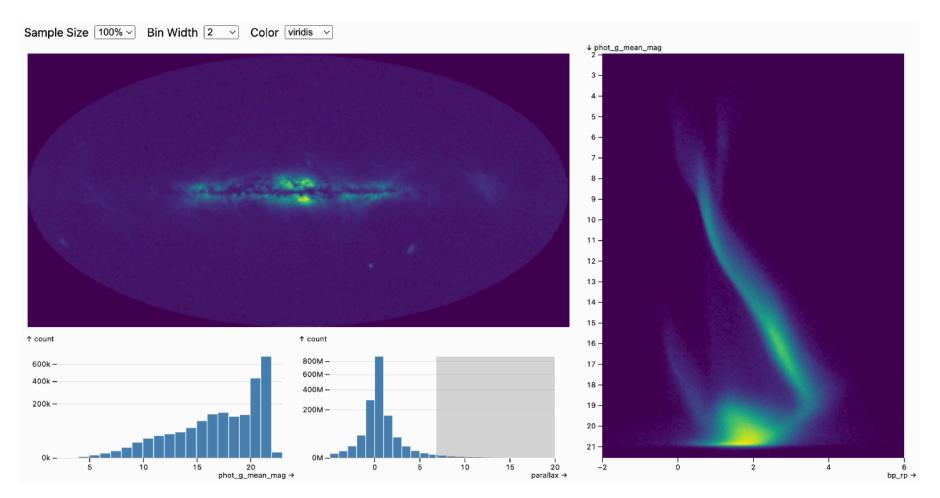




NY Taxi Rides 1M Records Jan 1-3, 2010



Gaia Star Catalog · 1.8B Records



Gaia Star Catalog · 1.8B Records

- 1. Query Database
- 2. Indexing / Preaggregation
- 3. Prefetching
- 4. Approximation

1. Query Database Offload to a scalable backend...

Tableau, for example, issues aggregation queries.

Analytical databases are designed for fast, parallel execution.

But round-trip queries to the DB may still be too slow...

- 2. Indexing / Preaggregation
- 3. Prefetching
- 4. Approximation

1. Query Database ... or alternative data frame implementation

Python: Polars, Vaex, Modin, cuDF

R: dbplyr

All: DuckDB

- 2. Indexing / Preaggregation
- 3. Prefetching
- 4. Approximation

- 1. Query Database
- **2. Indexing / Preaggregation** Query data summaries Build sorted indices or pre-aggregated data to quickly re-calculate aggregations as needed on the client.
- 3. Prefetching
- 4. Approximation

- 1. Query Database
- 2. Indexing / Preaggregation
- 3. Prefetching Request data before it is needed

Reduce latency by speculatively querying for data before it is needed. Requires prediction models to guess what is needed.

4. Approximation

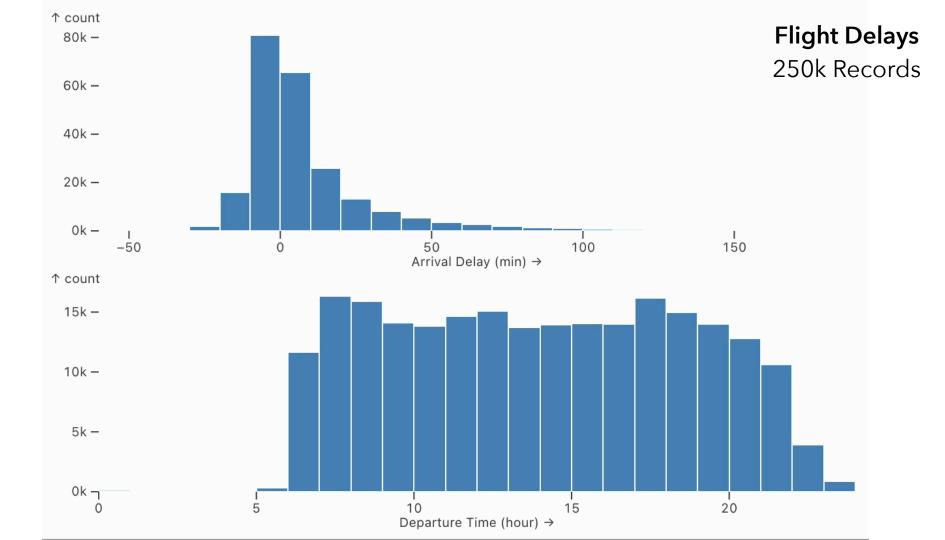
- 1. Query Database
- 2. Indexing / Preaggregation
- 3. Prefetching
- **4. Approximation** Give fast, approximate answers

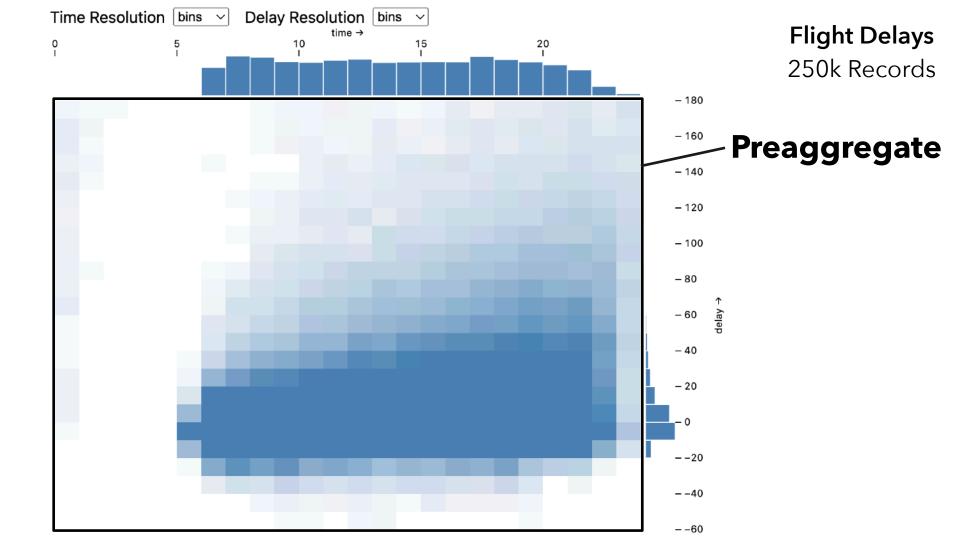
Reduce latency by computing aggregates on a sample, ideally with approximation bounds characterizing the error.

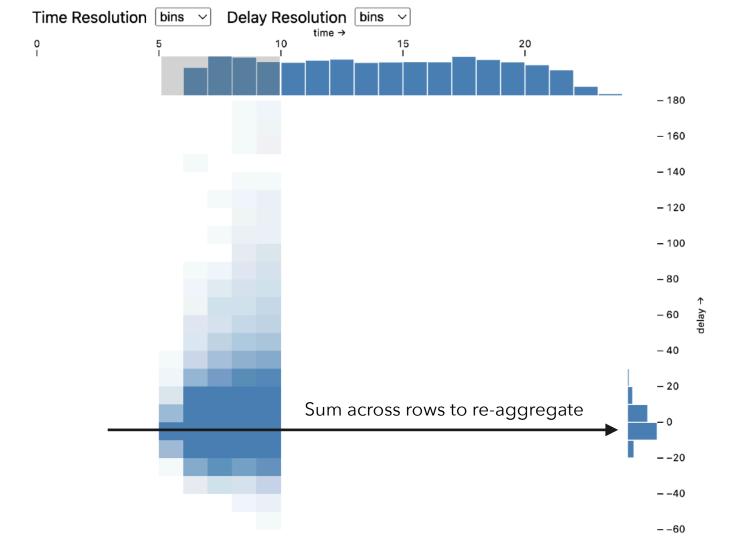
- 1. Query Database
- 2. Indexing / Preaggregation
- 3. Prefetching
- 4. Approximation

These strategies are **not** mutually exclusive! Systems can apply them in tandem.

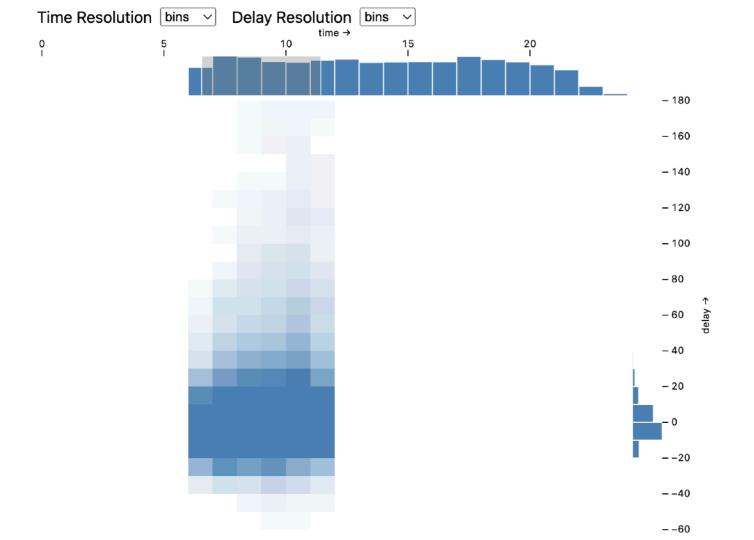
Preaggregation



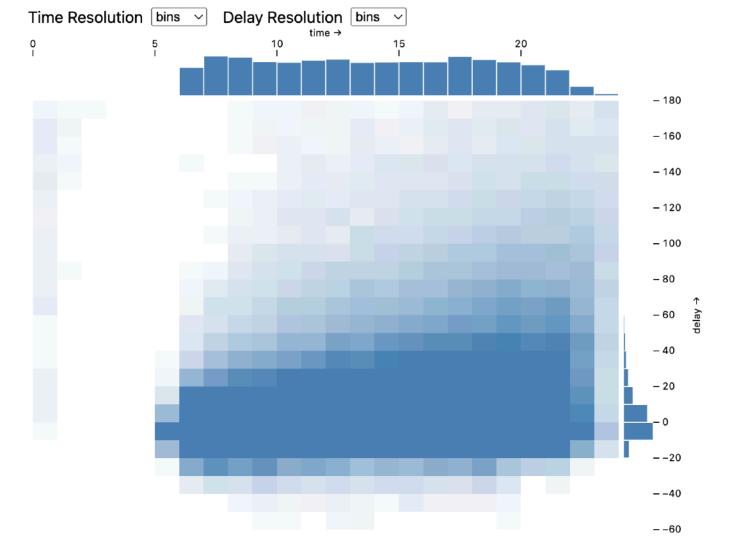




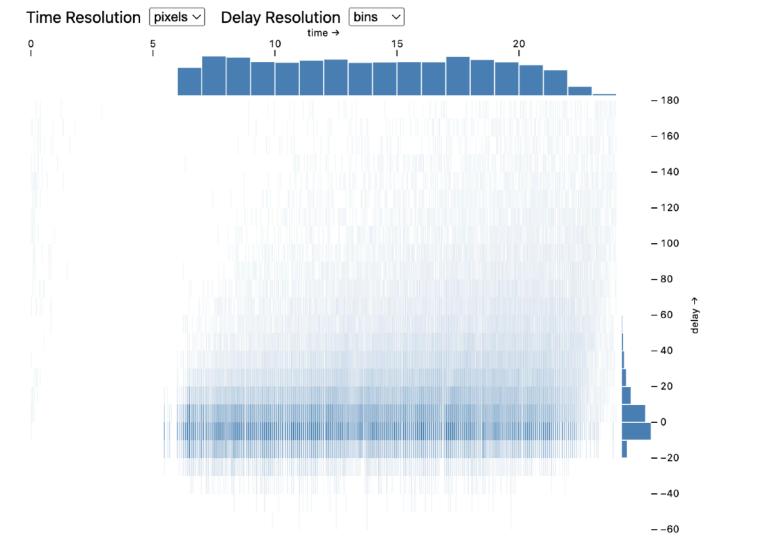
Flight Delays 250k Records

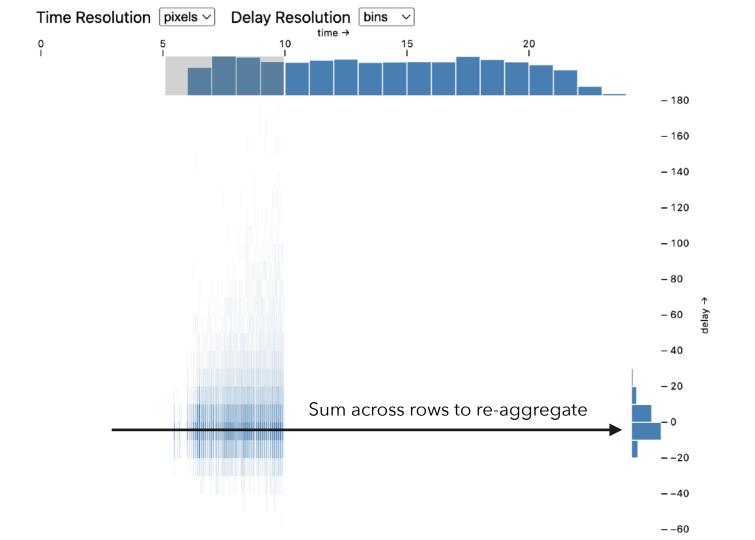


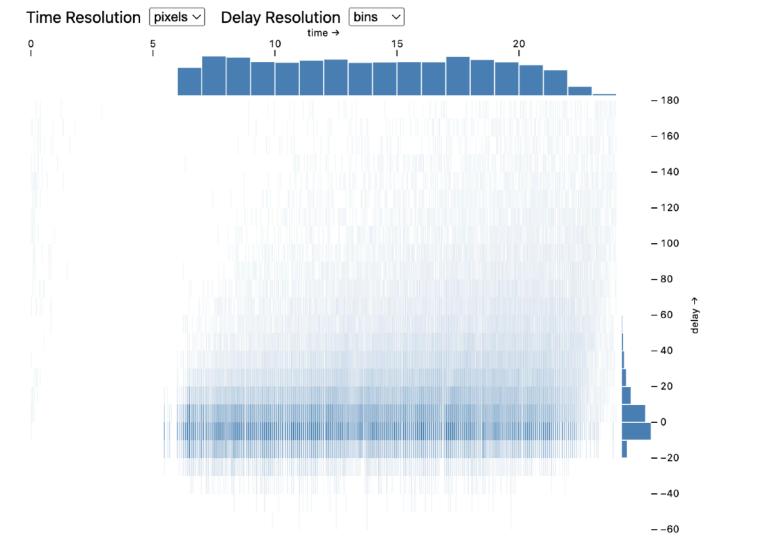
Flight Delays 250k Records

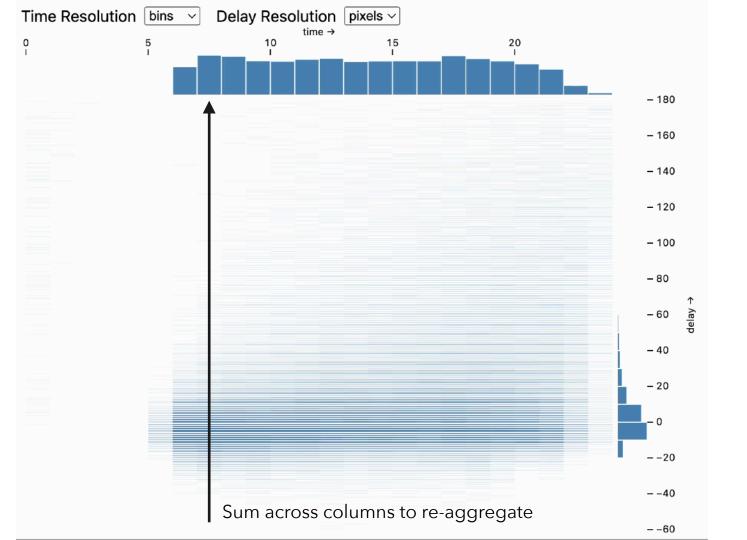


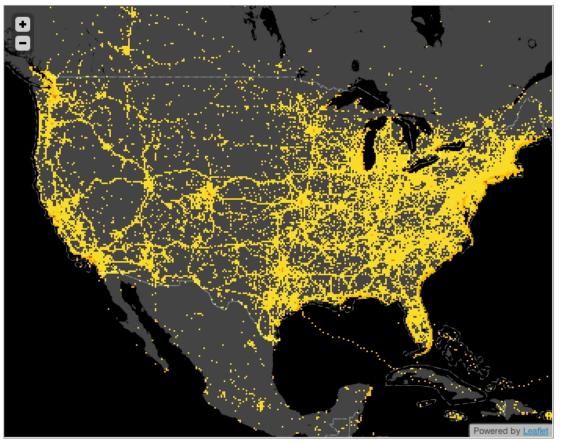
Flight Delays 250k Records

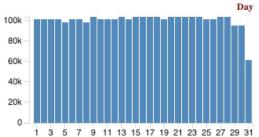


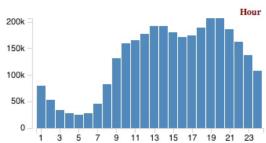


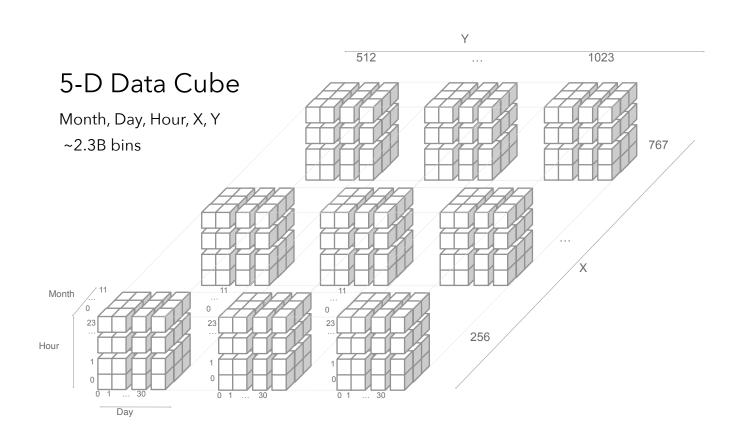


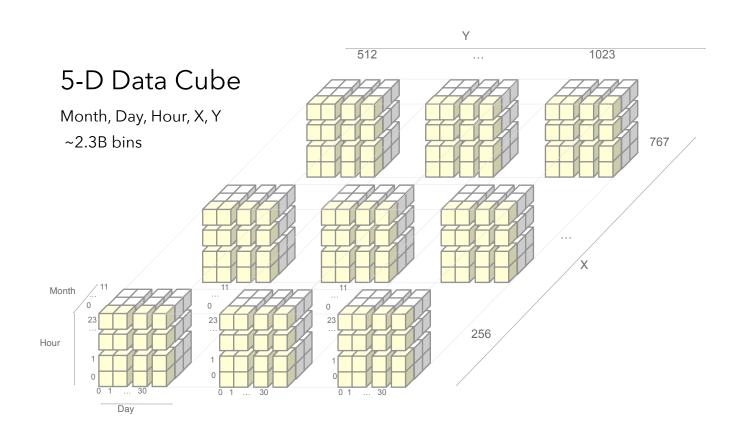


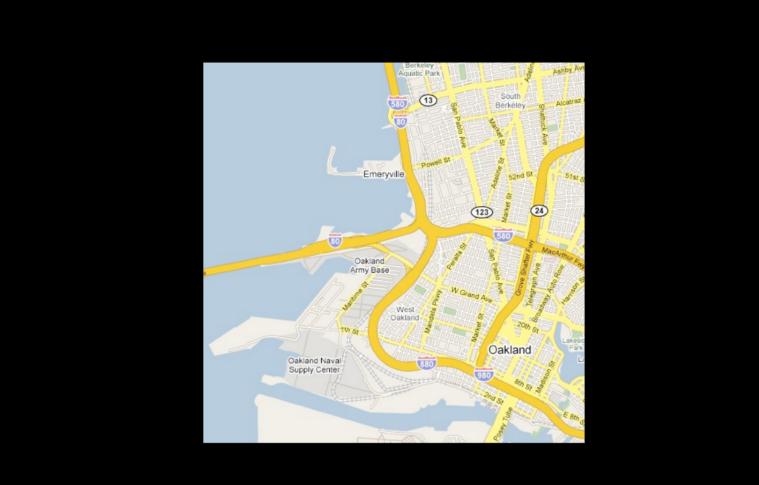


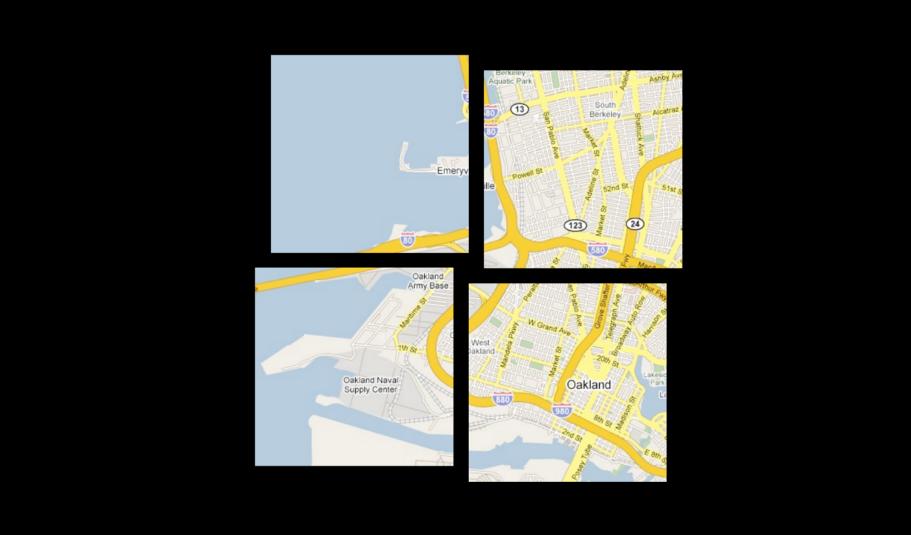






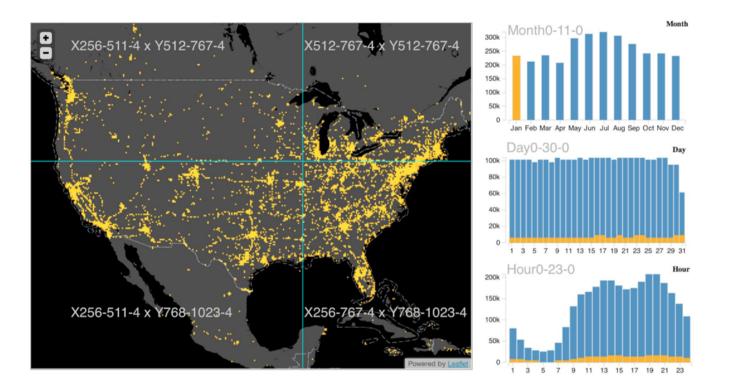


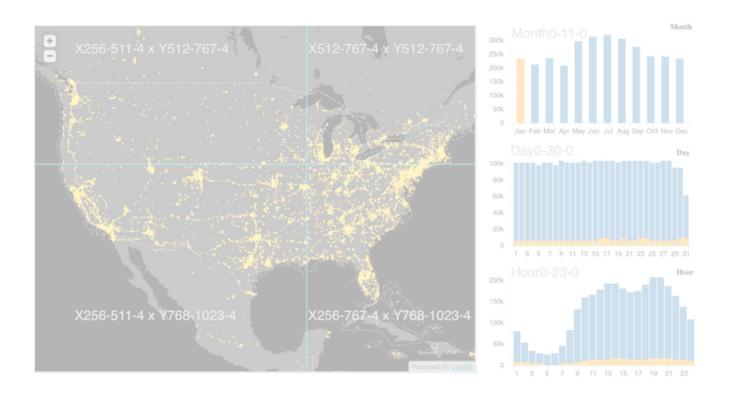


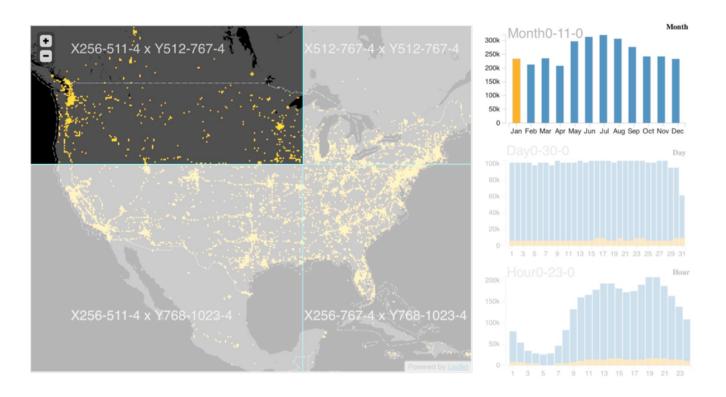


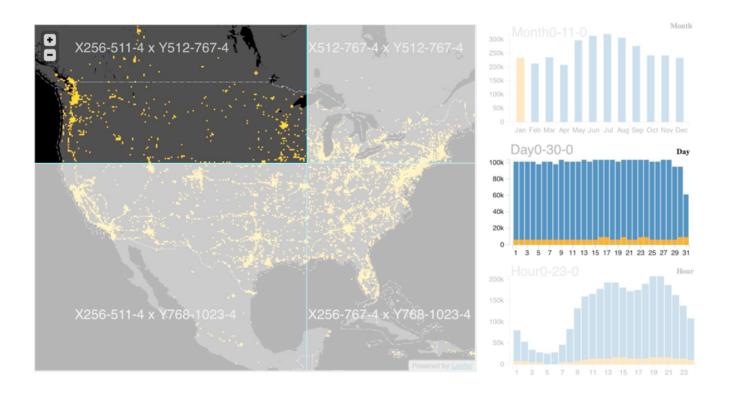
Multivariate Data Tiles

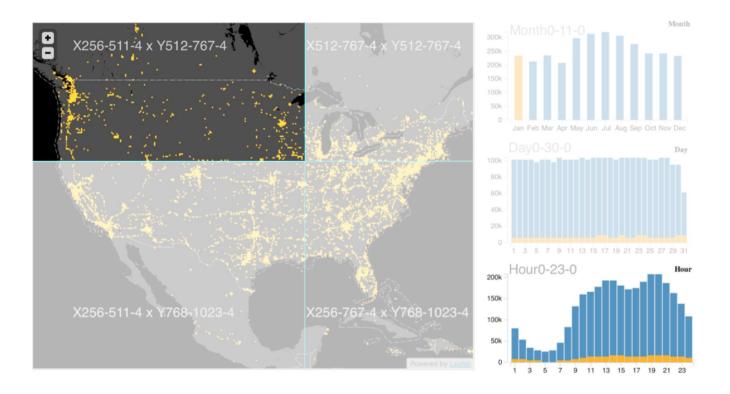
- 1. Send data, not pixels
- 2. Embed multi-dim data

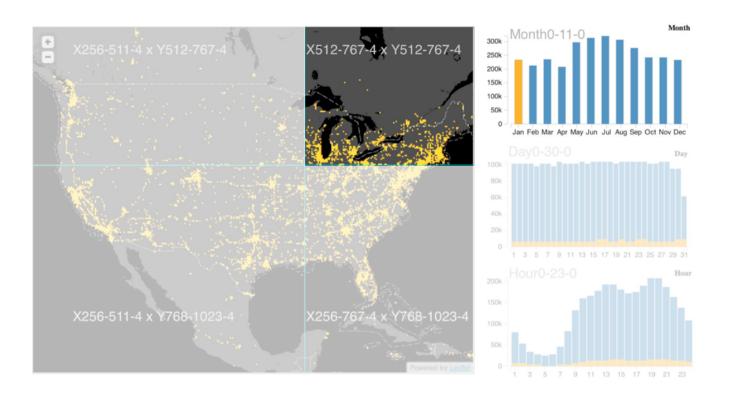


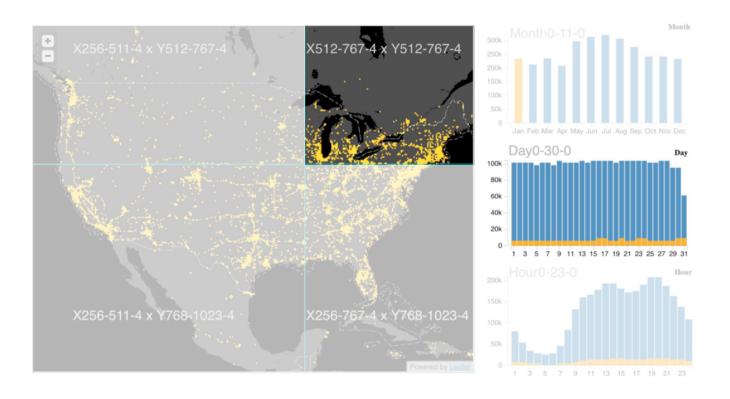


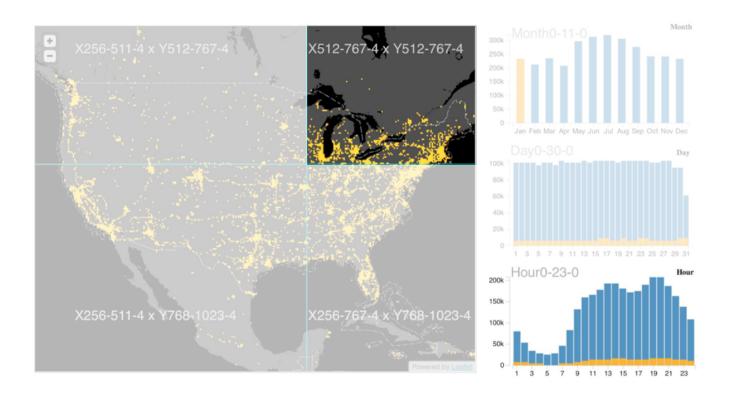


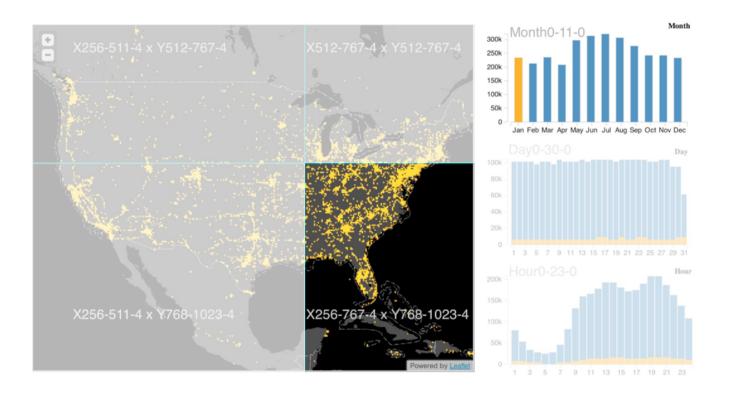


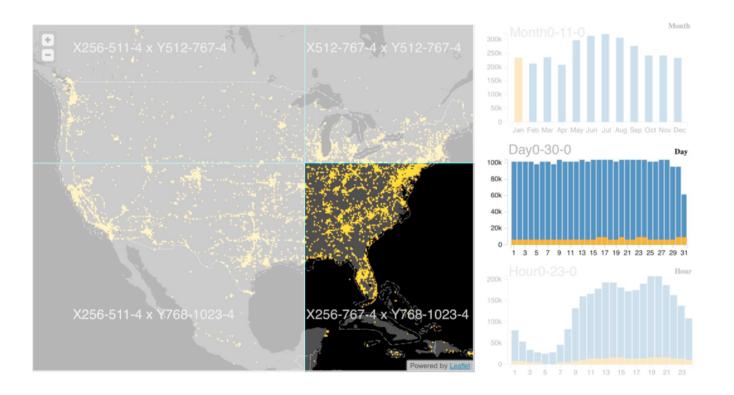


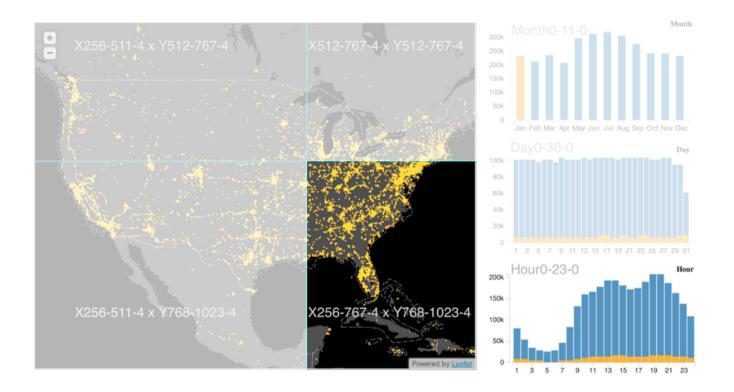


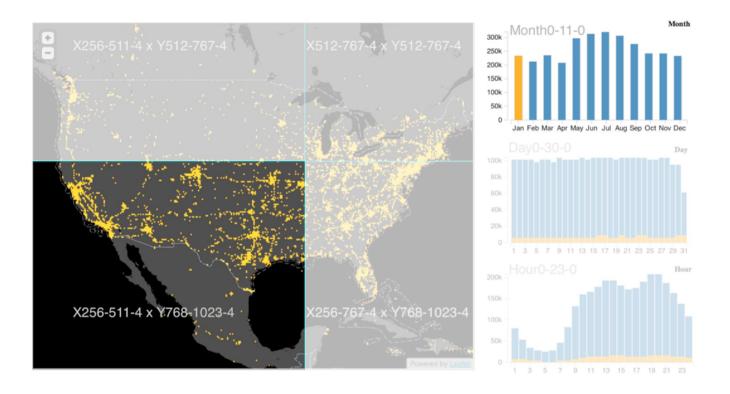


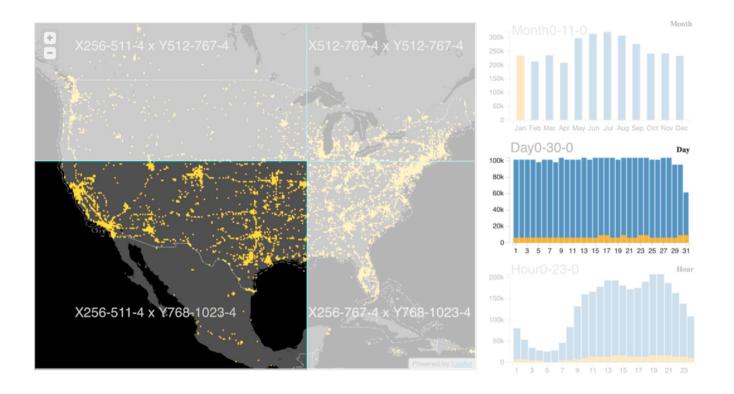


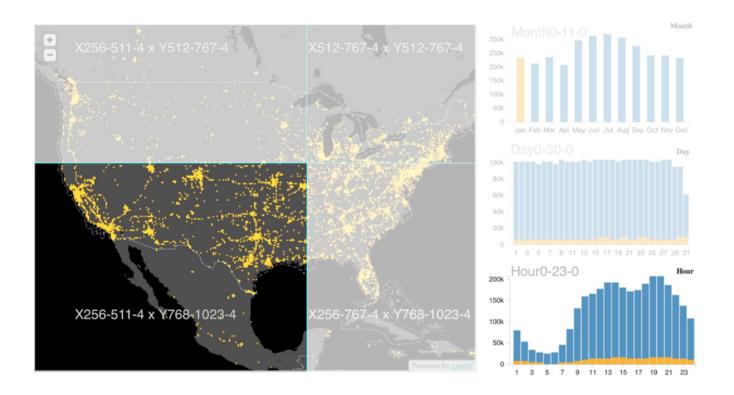


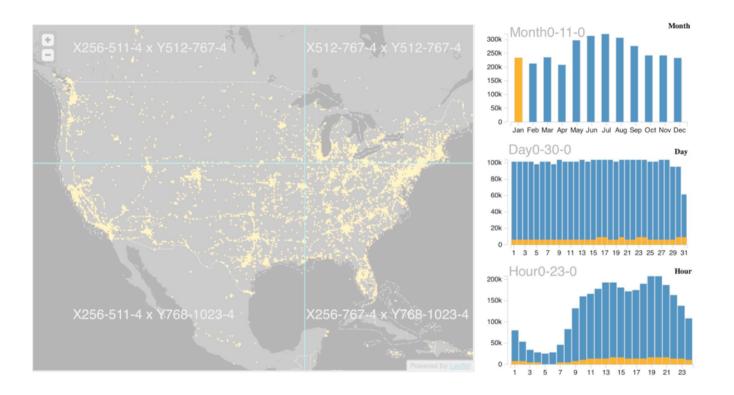


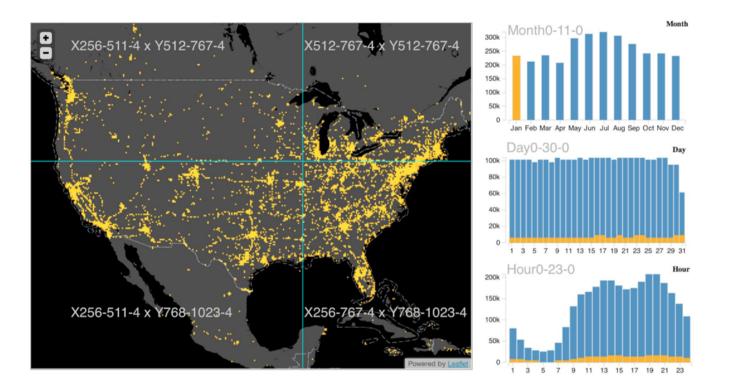




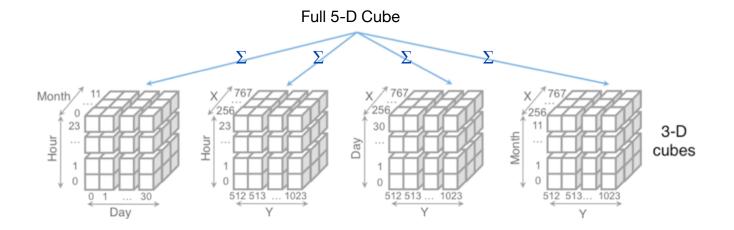




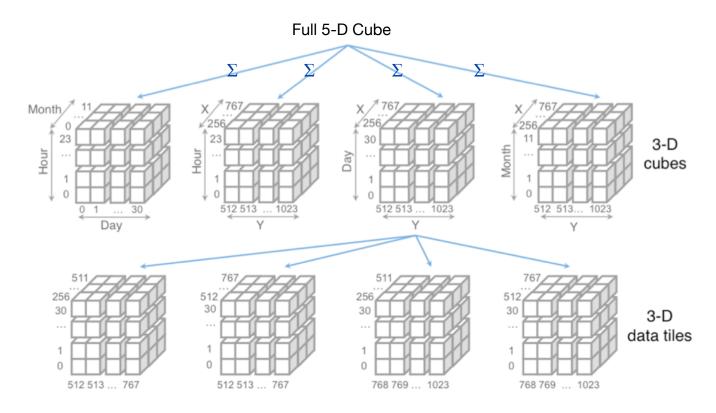




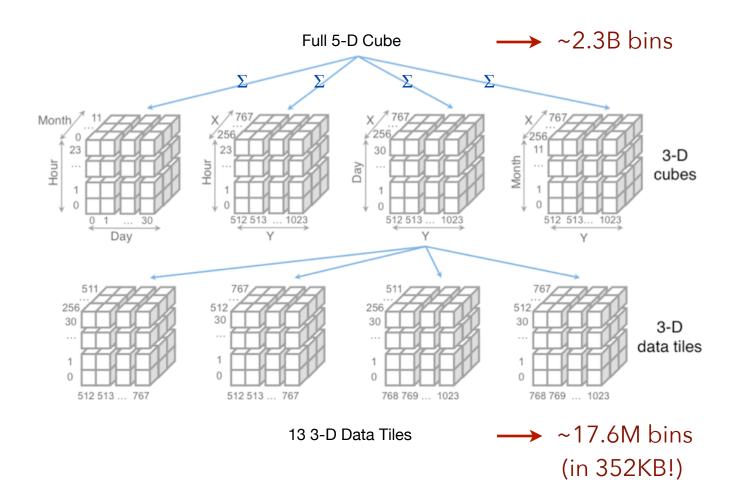
Full 5-D Cube

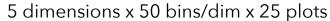


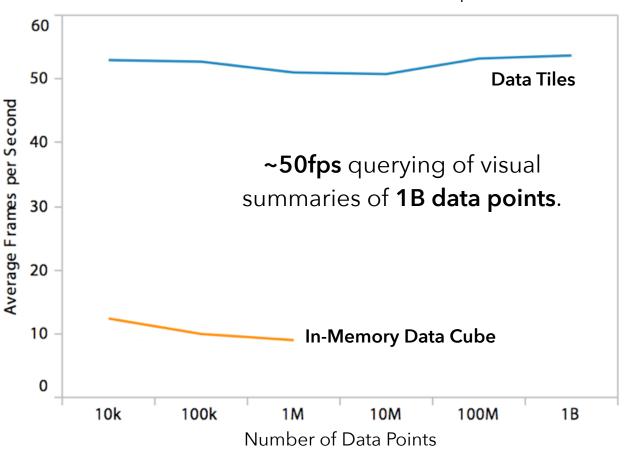
For any pair of 1D or 2D binned plots, the maximum number of dimensions needed to support brushing & linking is **four**.



13 3-D Data Tiles







Limitations and Questions

But where do the multivariate data tiles come from?

They must be computed, either ahead of time or on-the-fly. Up to the 100M point range, an analytic database can do this on the fly. In the 1B point range, pre-computation avoids delays.

We can also *prefetch*: we can start computing new data tiles as soon as the pointer enters a chart, before a selection is made.

Does super-low-latency interaction really matter?

Is it worth it to go to all of this trouble? (Short answer: yes!)
High latency leads to reduced analytic output [Liu & Heer, InfoVis 2014]

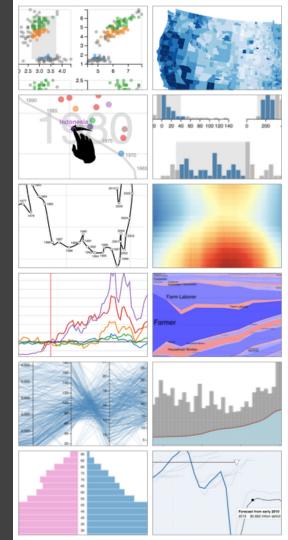
Sampling Methods

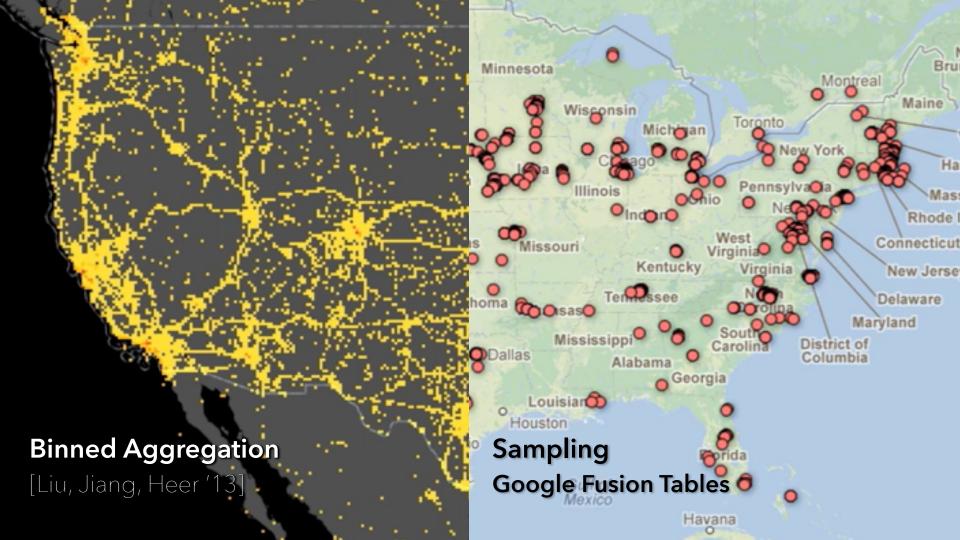
Common Sampling Methods

First-N: Useful for transformation, but not inference.

Random: Good default, but may miss features of interest. Possible in one pass via reservoir sampling, or faster if stored in randomized order.

Stratified: Sample within groups, ensure coverage and balance across those categories.



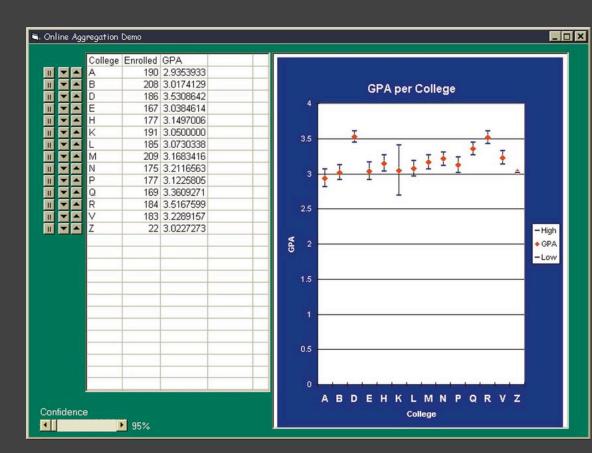


Online Aggregation [Hellerstein, Haas, Wang '97]

Provide dynamic, *progressive* results as queries run: see results over growing samples.

Visualize current results with confidence intervals to convey uncertainty of estimate.

Challenge: difficult to ensure truly random sampling.

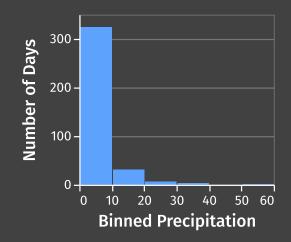


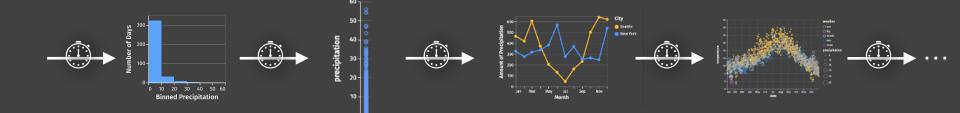
What if data is too large to query in a reasonable time?

Trust, but Verify: Optimistic Vis

[Moritz, Fisher, Ding & Wang '17]

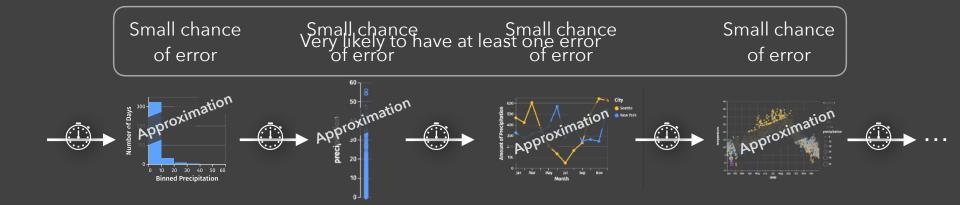
Strategies: Query Database, Approximation





Latencies reduce engagement and lead to fewer observations.

The Effect of Interactive Latency. Liu, Heer. IEEE InfoVis 2014.



Approximation: Trade Accuracy for Speed

Approximate query processing (AQP)
Uncertainty estimation in statistics
Uncertainty visualization
Probabilistic programming
Approximate hardware

Pick your poison:

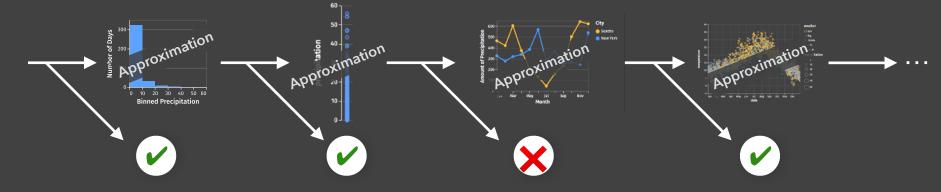
- 1. Trust the approximation, or
- 2. Wait for everything to complete.

Optimistic Visualization

Trust but Verify

What if we think of the issues with approximation as **user experience** problems?

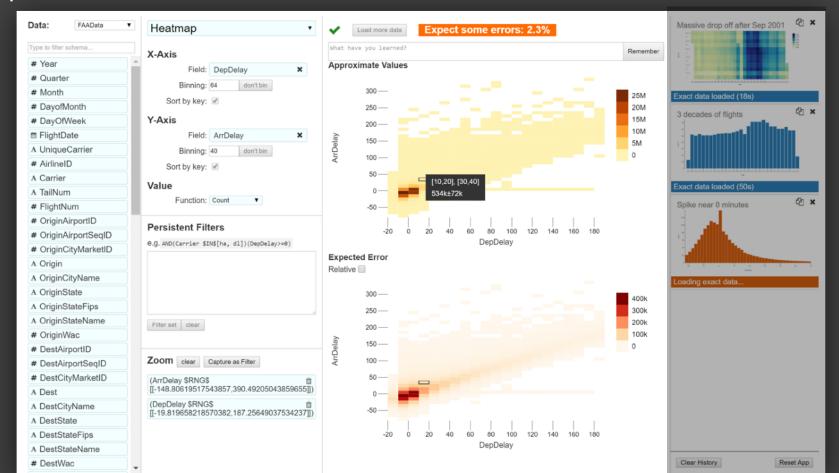
Optimistic Visualization



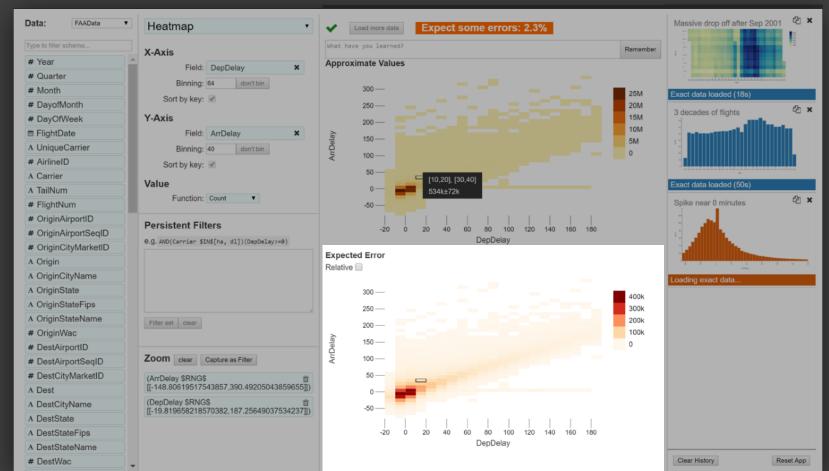
- 1. Analysts uses initial estimates.
- 2. Precise queries run in the background.
- 3. System confirms results. Analyst detects errors.

Analysts can use approximations and also trust them.

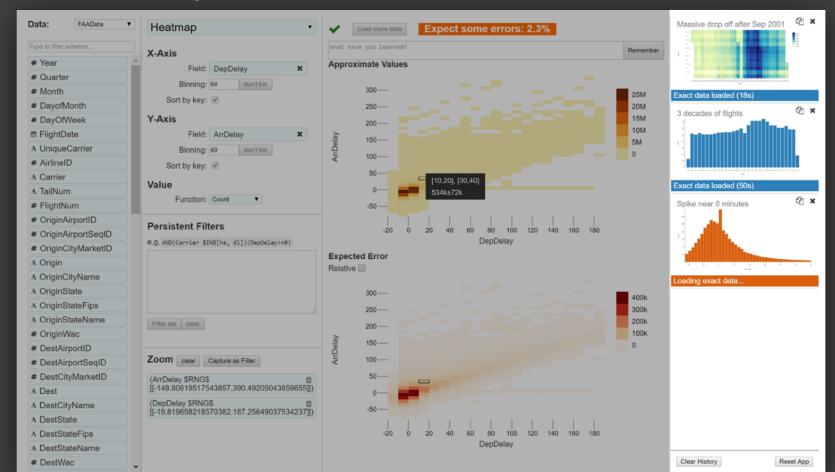
Optimistic Visualization



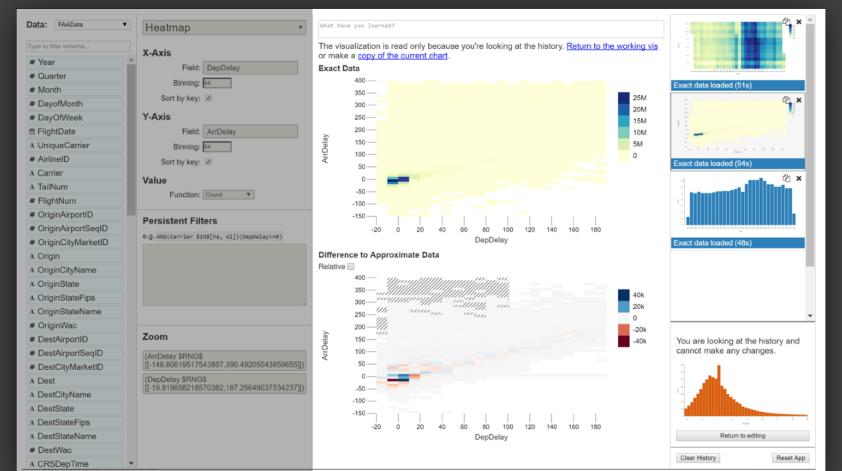
Visualize Uncertainty



Show a History of Previous Charts



Help Analysts Confirm Results



Evaluation

Case studies with teams at Microsoft who brought in their own data.

Approximation works

"seeing something right away at first glimpse is really great"

Need for guarantees

"[with a competitor] I was willing to wait 70-80 seconds. It wasn't ideally interactive, but it meant I was looking at all the data."

Optimism works

"I was thinking what to do next– and I saw that it had loaded, so I went back and checked it

. . . [the passive update is] very nice for not interrupting your workflow."

In Conclusion...

Two Challenges:

- 1. Effective visual encoding
 - 2. Real-time interaction

Perceptual and interactive scalability should be limited by the chosen resolution of the visualized data, not the number of records.

Bin > Aggregate (> Smooth) > Plot

- **1. Bin** Divide data domain into discrete "buckets"
- 2. Aggregate Count, Sum, Average, Min, Max, ...
- 3. Smooth Optional: smooth aggregates [Wickham '13]
- **4. Plot** Visualize the aggregate values

Interactive Scalability Strategies

- 1. Query Database
- 2. Client-Side Indexing / Data Cubes
- 3. Prefetching
- 4. Approximation

These strategies are **not** mutually exclusive! Systems can apply them in tandem.