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What do we mean by 
“interpretable”?



Causal (why): the degree to which a person 
can understand the cause of a result. 

Predictive (what): the degree to which a 
person can predict the model’s result. 

By whom? For what purpose?

Varied notions of “interpretable”



Why “interpretable” models?



Fairness: assess for bias / discrimination 

Privacy: protect sensitive information 

Reliability: sensitivity to input changes 

Causality: explanatory, not just predictive 

Trust: make informed deployment choices

Why “interpretable” models?



“Inherently” interpretable models (?) 
- Decision trees, decision lists 
- Linear models 
- Generalized additive models (GAMs) 

Approaches to Interpretability



“Inherently” interpretable models (?) 
- Decision trees, decision lists 
- Linear models 
- Generalized additive models (GAMs) 

Inspection / analysis of existing models 
- Visualize model features, activations 
- “Model-agnostic” analysis of behavior

Approaches to Interpretability



Model Assessment



How well does the curve fit the data?

Transforming Data

[Cleveland 85]



Plot vertical distance from best fit curve 
Residual graph shows goodness of fit

Plot the Residuals

[Cleveland 85]



Plot vertical distance from best fit curve 
Residual graph shows goodness of fit

Plot the Residuals

[Cleveland 85] Heteroscedasticity!



Multiple Plotting Options

[Cleveland 85]

Plot model in data space Plot data in model space



Model Prediction Score +-

Model Tracker  [Amershi et al. 2015]



Assessing Fairness  [Wattenberg et al. 2016]

https://research.google.com/bigpicture/attacking-discrimination-in-ml/


Dimensionality Reduction



Project nD data to 2D or 3D for viewing. Often used 
to interpret and sanity check high-dimensional 
representations fit by machine learning methods. 
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to interpret and sanity check high-dimensional 
representations fit by machine learning methods. 

DR methods are used to aid interpretation, but are 
also subject to their own interpretation issues! 

Dimensionality Reduction



Project nD data to 2D or 3D for viewing. Often used 
to interpret and sanity check high-dimensional 
representations fit by machine learning methods. 

DR methods are used to aid interpretation, but are 
also subject to their own interpretation issues! 

Different DR methods make different trade-offs: for 
example to preserve global structure (e.g., PCA) or 
emphasize local structure (e.g., nearest-neighbor 
approaches, including t-SNE and UMAP).

Dimensionality Reduction



Principal Components Analysis (PCA) 
Linear transformation of basis vectors, ordered by 
amount of data variance they explain. 

t-Dist. Stochastic Neighbor Embedding (t-SNE) 
Probabilistically model distance, optimize positions. 

Uniform Manifold Approx. & Projection (UMAP) 
Identify local manifolds, then stitch them together.

Reduction Techniques



1. Mean-center   
the data. 

2. Find ⊥ basis 
vectors that 
maximize the 
data variance. 

3. Plot the data 
using the top 
vectors.

Principal Components Analysis



Linear transform: 
scale and rotate 
original space. 

Lines (vectors) 
project to lines. 

Preserves global 
distances.

Principal Components Analysis



Distort the space, trade-off preservation of global 
structure to emphasize local neighborhoods. Use 
topological (nearest neighbor) analysis. 

Two popular contemporary methods: 
t-SNE - probabilistic interpretation of distance 
UMAP - tries to balance local/global trade-off

Non-Linear Techniques



distill.pub

https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/


Visualizing t-SNE  [Wattenberg et al. ’16]

http://distill.pub/2016/misread-tsne/


1. Model probability P of one point “choosing” another as 
its neighbor in the original space, using a Gaussian 
distribution defined using the distance between points. 
Nearer points have higher probability than distant ones. 

t-SNE  [Maaten & Hinton 2008]



2. Define a similar probability Q in the low-dimensional (2D 
or 3D) embedding space, using a Student’s t distribution 
(hence the “t-“ in “t-SNE”!). The t-distribution is heavy-
tailed, allowing distant points to be even further apart. 

t-SNE  [Maaten & Hinton 2008]

Normal

t



1. Model probability P of one point “choosing” another as 
its neighbor in the original space, using a Gaussian 
distribution defined using the distance between points. 
Nearer points have higher probability than distant ones. 

2. Define a similar probability Q in the low-dimensional (2D 
or 3D) embedding space, using a Student’s t distribution 
(hence the “t-“ in “t-SNE”!). The t-distribution is heavy-
tailed, allowing distant points to be even further apart. 

3. Optimize to find the positions in the embedding space 
that minimize the Kullback-Leibler divergence between 
the P and Q distributions: KL(P || Q)

t-SNE  [Maaten & Hinton 2008]



Multiplicity  [Stefaner 2018]

t-SNE projection of photos taken in Paris, France

https://truth-and-beauty.net/projects/multiplicity


MT Embedding  [Johnson et al. 2018]

t-SNE projection of latent space of language translation model.

https://arxiv.org/pdf/1611.04558v1.pdf


Form weighted nearest neighbor graph, then 
layout the graph in a manner that balances 
embedding of local and global structure. 
“Our algorithm is competitive with t-SNE for 
visualization quality and arguably preserves more 
of the global structure with superior run time 
performance.” - McInnes et al. 2018

UMAP  [McInnes et al. 2018]





Reader Behavior [Conlen et al. 2019]

UMAP projection of reader activity for an interactive article.

“Tentacles” map to 
activity archetypes, 
“blob” body maps 

to sessions that 
blend behaviors.



Visualization of “Deep” 
Neural Network Models



TensorFlow Graph [Wongsuphasawat et al. 2018]

Graph 
Simplification

Nested 
Structure

http://idl.cs.washington.edu/papers/tfgraph


ActiVis  [Kahng et al. 2017]

https://minsuk.com/research/activis/


Seq2Seq-Vis  [Strobelt et al. 2018]

https://seq2seq-vis.io/


Local Explanations 
(Model Specific)



CNNs for Image Processing 

Convolutional Neural Nets

GoogLeNet - 22 layers!

Prototypical CNN Architecture

https://ai.google/research/pubs/pub43022
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Convolutional Neural Network (CNN) for Images 

Basic Idea: 
Select one or more “neurons” in a network layer 
Optimize to find input that maximizes excitation 

Feature Visualization  [Olah et al. 2017]



Feature Visualization for CNNs

https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/


Single Unit Visualizations

https://distill.pub/2017/feature-visualization/


Single Unit Visualizations

https://distill.pub/2017/feature-visualization/


Optimizing for Diversity

https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/


Multi-Unit Visualization

https://distill.pub/2017/feature-visualization/


Multi-Unit Visualization

https://distill.pub/2017/feature-visualization/


Convolutional Neural Network (CNN) for Images 

Basic Idea: 
Select one or more “neurons” in a network layer 
Optimize to find input that maximizes excitation 

Challenges: 
Choice of optimization? What dimensions to 

inspect? How to constrain or regularize? 
Unconstrained approach leads to model artifacts. 
Applicability to non-image data?

Feature Visualization for CNNs



Local Explanations 
(Model Agnostic)



Local 
Interpretable 
Model-Agnostic 
Explanations

LIME  [Ribeiro et al. 2016]



Model-agnostic: take any classifier as input 

LIME Local Interpretable Model-Agnostic Explanations



Model-agnostic: take any classifier as input 
For a given prediction: 
Identify aspects meaningful to a person 
Perturb those aspects around the prediction 

(e.g., remove words or image regions) 
Fit local “interpretable” model to the results 

(e.g., locally-weighted linear model) 

LIME Local Interpretable Model-Agnostic Explanations



Despite complex global structure, a locally 
weighted linear model may suffice to explain.

LIME Intuition

https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime


LIME Local Interpretable Model-Agnostic Explanations

Why is this predicted to be a “tree frog”?

https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime


LIME Local Interpretable Model-Agnostic Explanations

https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime


LIME Local Interpretable Model-Agnostic Explanations

Regions sufficient for “frog” detection

https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime


Model-agnostic: take any classifier as input 
For a given prediction: 
Identify aspects meaningful to a person 
Perturb those aspects around the prediction 

(e.g., remove words or image regions) 
Fit local “interpretable” model to the results 

(e.g., locally-weighted linear model) 

For an entire model: 
Optimize for a set of representative examples

LIME Local Interpretable Model-Agnostic Explanations



LIME Local Interpretable Model-Agnostic Explanations

http://arxiv.org/pdf/1602.04938v1.pdf


LIME Local Interpretable Model-Agnostic Explanations

http://arxiv.org/pdf/1602.04938v1.pdf


LIME Local Interpretable Model-Agnostic Explanations

Detects snow, 
not wolves!

http://arxiv.org/pdf/1602.04938v1.pdf
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Yang Liu, Eunice Jun, Qisheng Li, Jeffrey Heer 
University of Washington 
Interactive Data Lab 

https://github.com/uwdata/latent-space-cartography

Latent Space Cartography:  
Visual Analysis of Vector Space Embeddings
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Unlabeled 
Data

Vector Space 
Representation

ML model
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Vector Space: Example

dragon 0 1 0 2 1 0 0 0 1 0

Word embeddings 
represent a word as a vector of numbers
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Vector Space: Example

0 1 0 2 1 0 0 0 1 0

Word embeddings 
represent a word as a vector of numbers

Encoder DecoderLatent 
Space

Latent Spaces in Generative Models

dragon
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Vector Space: Example

0 1 0 2 1 0 0 0 1 0

Word embeddings 
represent a word as a vector of numbers

Encoder DecoderLatent 
Space

Latent Spaces in Generative Models

Latent Spaces

dragon
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Why are latent spaces important?

Serve as features for downstream ML applications1
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Why are latent spaces important?

Serve as features for downstream ML applications

Provide insights into the data

1

2

How the meaning of words change over time Biologically meaningful latent spaces
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Human judgement is essential in interpreting latent spaces



�9

Latent Space Cartography
Mapping meaningful dimensions of latent spaces
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Surveyed 78 papers from ML, NLP and science

Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Extracted most common interpretation tasks

Integrated the tasks into a workflow

1

2

3

Built a visual analysis system, also named Latent Space 
Cartography (LSC)

4



Introduction 
Background and motivations 

System Walkthrough 
Workflow and system features via a scenario on emojis 

Case Study 
Two analysis scenarios for word embeddings 

Conclusion 
Our contributions and future work
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Latent Space 
Cartography   

Visual Analysis of Vector 
Space Embeddings



Background: Variational Auto-encoder (VAE)
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Background: Variational Auto-encoder (VAE)
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Variational 
Auto-encoder 

(VAE)



Background: Variational Auto-encoder (VAE)
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Variational 
Auto-encoder 

(VAE)



Background: Variational Auto-encoder (VAE)
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Encoder Decoder

Latent 
vector

Mean 
vector

Standard deviation 
vector

Loss = Reconstruction loss + KL divergence



Latent Space in VAE

�16

CARTER S., NIELSEN M.: Using artificial intelligence to augment human intelligence. 
Distill (2017). https://distill.pub/2017/aia.



Latent Space in VAE
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CARTER S., NIELSEN M.: Using artificial intelligence to augment human intelligence. 
Distill (2017). https://distill.pub/2017/aia.

Attribute vector
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VAEs might help me understand emojis!
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Crawl ~24,000 emojis

Apple Google Twitter SamsungLG

…

Platforms

Versions

9.0 7.0 4.4 4.3

…

Latent spaces might help me understand emojis!
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Crawl ~24,000 emojis

Train 6 variational auto-encoders (VAEs) with 
varying latent dimensions

Load latent spaces into LSC!

Latent spaces might help me understand emojis!
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I would like to gain initial familiarity with 
the latent space …

Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships
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Examining an overview distribution 



Examining an overview distribution 

�23

t-SNE PCA

or
an

ge
 —

 b
lu

e
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Android version 9 adopts a distinct style 
compared to its earlier versions

…

…Android 7:

Android 9:
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Does the latent space capture this trend?

Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

…

…Android 7:

Android 9:
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Does the latent space capture this trend?

Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

…

…Android 7:

Android 9:

Attribute Vector
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Defining an attribute vector

Interactively group 
samples
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Defining an attribute vector

Search metadata 
labels
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How do emojis fall along the attribute 
vector spectrum?

Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships
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Viewing data distribution relative to the attribute vector

X-axis: attribute vector direction

Y-axis: 1st PC (largest eigenvector) 
of remaining dimensions
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Viewing data distribution relative to the attribute vector

Convex hull of 
Android 9 group

Convex hull of 
Android 7 group
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Viewing data distribution relative to the attribute vector

…

…

What emojis are considered by the model to 
be more similar to Android 9 than Android 7?
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Does the attribute vector reliably represent 
a salient relationship?
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Does the attribute vector reliably represent 
a salient relationship?
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Does the attribute vector reliably represent 
a salient relationship?
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Does the attribute vector reliably represent 
a salient relationship?



Assessing attribute vector saliency

�37

Grey area: all possible pairs 
between individual emojis
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Assessing attribute vector saliency
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Assessing attribute vector saliency



Assessing attribute vector saliency

�40

Pair alignment in the original space

Alignment of individual 
pairs in the attribute vector



Assessing attribute vector saliency

�41

Pair alignment in the original space

Alignment of individual 
pairs in the attribute vector

Problem: as dimensionality increases, random 
vectors are more likely to be orthogonal!



Assessing attribute vector saliency

�42

Pair alignment in the original space

Alignment of random pairs Alignment of individual 
pairs in the attribute vector



Assessing attribute vector saliency

�43

Pair alignment in the original space

Cosine similarity divided by pooled standard deviation

Difficult to observe 
by chance



�44

Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Might our attribute vector transform an 
arbitrary emoji into Android 7 style?



Performing attribute vector arithmetic
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- = - ?
Attribute vector arithmetic

vec( )vec( ) vec( )
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Performing attribute vector arithmetic

Example:  
man - woman
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Performing attribute vector arithmetic

Example:  
man - woman

Attribute 
Vector

Analogy 
Man Wearing Turban

Analogy 
Man

Analogy 
Man Pilot

Analogy 
Man Health Worker

Analogy 
Man Dancing
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

(… investigated more attribute vectors …)
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

How do multiple attribute vectors relate?
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Examining how multiple attribute vectors relate

Visualizing attribute vectors in a global view

t-SNE UMAP PCA Attribute vector 
projection
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Examining how multiple attribute vectors relate

t-SNE UMAP

PCA Attribute vector 
projection
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Examining how multiple attribute vectors relate

t-SNE
UMAP

PCA Attribute vector 
projection



Examining how multiple attribute vectors relate

�53

t-SNE

Step 1: sample at regular intervals



Examining how multiple attribute vectors relate

�54

t-SNE

Step 1: sample at regular intervals

Step 2: map control points to 2D

Step 3: render a Catmull-Rom spline



Examining how multiple attribute vectors relate

�55

t-SNE

Step 1: sample at regular intervals

Step 2: map control points to 2D

Step 3: render a Catmull-Rom spline

• Find k nearest neighbors 
• Map neighbors to 2D 
• Compute a weighted average
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Examining how multiple attribute vectors relate

Are attribute vectors orthogonal?



�57

Examining how multiple attribute vectors relate

Orthogonal vectors represent independent dimensions …

        Semantic axes to re-orient the latent space?



Introduction 
Background and motivations 

System Walkthrough 
Workflow and system features via a scenario on emojis 

Case Study 
Two analysis scenarios for word embeddings 

Conclusion 
Our contributions and future work
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Latent Space 
Cartography   

Visual Analysis of Vector 
Space Embeddings
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Gender Biases in Word Embeddings
… with a few simple interactions
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Gender Biases in Word Embeddings

BOLUKBASI T., CHANG K.-W., ZOU J. Y., SALIGRAMA V., KALAI A. T.: Man is to computer 
programmer as woman is to homemaker? Debiasing word embeddings. In Advances in Neural 
Information Processing Systems (2016), pp. 4349–4357

Bolukubasi et al. quantify which words are closer to he versus 
she in word embedding to reveal gender stereotypes

We’ll quickly replicate the findings in LSC

king
uncle

father

sonhe

queen
daughter

mother

aunt
she

Attribute Vector
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Implicit stereotype in the 
training corpus
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�64
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Words are shifted toward 
the male concept
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Analysis of Analogy Benchmark
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Google’s Analogy Benchmark

MIKOLOV T., YIH W.-T., ZWEIG G.: Linguistic regularities in continuous space word representations. 
In Proceedings of the Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies (2013), pp. 746–751

Family

king:queen 
son:daughter 
uncle:aunt 
…

Comparative

bad:worse 
bright:brighter 
high:higher 
…

…
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Google’s Analogy Benchmark

MIKOLOV T., YIH W.-T., ZWEIG G.: Linguistic regularities in continuous space word representations. 
In Proceedings of the Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies (2013), pp. 746–751

Family

king:queen 
son:daughter 
uncle:aunt 
…

king:queen
son:daughter
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Google’s Analogy Benchmark

MIKOLOV T., YIH W.-T., ZWEIG G.: Linguistic regularities in continuous space word representations. 
In Proceedings of the Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies (2013), pp. 746–751

Family

king:queen 
son:daughter 
uncle:aunt 
…

v = vec(king) - vec(son) + vec(queen)

king:queen son:daughter

Is v the nearest neighbor of vec(daughter)?

We use words in these analogy groups 
to define attribute vectors in LSC
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Dimension = 50 Dimension = 100 Dimension = 300
Google’s analogy test score:  

52.8% (317/600)
Google’s analogy test score:  

78.0% (468/600)
Google’s analogy test score:  

78.7% (472/600)
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Dimension = 50 Dimension = 100 Dimension = 300
Google’s analogy test score:  

52.8% (317/600)
Google’s analogy test score:  

78.0% (468/600)
Google’s analogy test score:  

78.7% (472/600)

Convex hulls 
overlap
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Dimension = 50 Dimension = 100 Dimension = 300
Google’s analogy test score:  

52.8% (317/600)
Google’s analogy test score:  

78.0% (468/600)
Google’s analogy test score:  

78.7% (472/600)

Saliency assessments agree 
with analogy test scores
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Case Study: Cancer Transcriptomes
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Case Study: Cancer Transcriptomes

WAY G. P., GREENE C. S.: Extracting a biologically relevant latent space from cancer transcriptomes with 
variational autoencoders. In Proceedings of Pacific Symposium on Biocomputing (2018), vol. 23, pp. 80–91.

Details in paper

Biological latent space Disagree with prior work!

    I agree that vector subtraction makes the most 
sense to get the full response.“

”



Introduction 
Background and motivations 

System Walkthrough 
Workflow and system features via a scenario on emojis 

Case Study 
Two analysis scenarios for word embeddings 

Conclusion 
Our contributions and future work
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Latent Space 
Cartography   

Visual Analysis of Vector 
Space Embeddings
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Latent Space Cartography
Mapping meaningful dimensions of latent spaces

A workflow of 
interpretation tasks
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Latent Space Cartography
Mapping meaningful dimensions of latent spaces

A workflow of interpretation tasks

A visual analysis system for 
supporting this workflow
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Latent Space Cartography
Mapping meaningful dimensions of latent spaces

A workflow of interpretation tasks

A visual analysis system for 
supporting this workflow

 - Linear projection to provide context

X-axis: attribute vector direction

1st PC (largest eigenvector) of 
rem

aining dim
ensions
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Latent Space Cartography
Mapping meaningful dimensions of latent spaces

A workflow of interpretation tasks

A visual analysis system for 
supporting this workflow

 - Methods to assess vector saliency

 - Linear projection to provide context
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Latent Space Cartography
Mapping meaningful dimensions of latent spaces

A workflow of interpretation tasks

A visual analysis system for 
supporting this workflow

 - Methods to assess vector saliency

 - Methods to compare multiple vectors

 - Linear projection to provide context
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Latent Space Cartography
Mapping meaningful dimensions of latent spaces

A workflow of interpretation tasks

A visual analysis system for supporting this workflow

Case studies across multiple domains

Scientific findings on 
cancer gene expression

Gender stereotypes 
in word embeddings
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Compare 
variants

Examine  
overview

Define  
relationship

Examine 
relationship

Assess 
interpolation

Assess 
analogies

Assess  
saliency

Compare 
relationships

Latent Space Cartography
Mapping meaningful dimensions of latent spaces

A workflow of interpretation tasks

A visual analysis system for supporting this workflow

Case studies across multiple domains

https://github.com/uwdata/latent-space-cartographyAvailable at:
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Latent Space Cartography:  
Visual Analysis of Vector Space Embeddings

Yang Liu, Eunice Jun, Qisheng Li, Jeffrey Heer 
University of Washington 
Interactive Data Lab 

https://github.com/uwdata/latent-space-cartography


