CSE 442 - Data Visualization

Visual Encoding Design

Jeffrey Heer University of Washington

A Design Space of Visual Encodings

Mapping Data to Visual Variables

Assign data fields (e.g., with N, O, Q types) to visual channels (x, y, color, shape, size, ...) for a chosen graphical mark type (point, bar, line, ...).

Additional concerns include choosing appropriate encoding parameters (log scale, sorting, ...) and data transformations (bin, group, aggregate, ...).

These options define a large combinatorial space, containing both useful and questionable charts!

1D: Nominal

Raw

$\begin{array}{cc} & \text { Europe }-0 \\ \text { 은 } & \text { Japan }-0 \\ & \text { USA }\end{array}$
Origin
θ
O Europe
色 Japan
\bigcirc USA
Origin
0JapanUSA

Origin
Europe
Japan
USA

Aggregate (Count)

Origin

- Europe
- Japan
- USA

Expressive?

Origin	
든	Europe - 0
	Japan - 0
	USA $]$
\otimes	Origin Europe
	둔 Japan
0	Origin Europe
	- Japan
	O USA
Origin Europe Japan USA	

Aggregate (Count)

1D: Quantitative

Raw

Aggregate (Count)

COUNT
$\circ 20$
040
$\bigcirc 600$
$\bigcirc 80$

Expressive?

Raw

Miles_per_Gallon

Miles_per_Gallon

Aggregate (Count)

COUNT
O 20
040
060
$\bigcirc 80$

Raw (with Layout Algorithm)

Treemap

Bubble Chart

Aggregate (Distributions)

middle 50\%

	1	1	1	1	1	1	1	1	1	1
0	5	10	15	20	25	30	35	40	45	50

Box Plot

2D: Nominal x Nominal

Aggregate (Count)

2D: Quantitative x Quantitative

2D: Nominal x Quantitative

Aggregate (Mean)

Origin

- Europe
- Japan
- USA

Raw (with Layout Algorithm)

Treemap
Bubble Chart

Origin

- Europe
- Japan
- USA

Beeswarm Plot

3D and Higher

 Two variables $[x, y$]Can map to 2D points.
Scatterplots, maps, ...

Third variable [z]

Often use one of size, color, opacity, shape, etc. Or, one can further partition space.

What about 3D rendering?

[Bertin]

Other Visual Encoding Channels?

wind map

Encoding Effectiveness

Effectiveness Rankings [Mackinlay 86]

QUANTITATIVE

Position
Length
Angle
Slope
Area (Size)
Volume
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Shape

ORDINAL
Position
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Length
Angle
Slope
Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Value)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

Effectiveness Rankings [Mackinlay 86]

QUANTITATIVE	ORDINAL	NOMINAL
Position	Position	Position
Length	Density (Value)	Color Hue
Angle	Color Sat	Texture
Slope	Color Hue	Connection
Area (Size)	Texture	Containment
Volume	Connection	Density (Value)
Density (Value)	Containment	Color Sat
Color Sat	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area (Size)	Slope
Containment	Volume	Area
Shape	Shape	Volume

Effectiveness Rankings [Mackinlay 86]

QUANTITATIVE	ORDINAL	NOMINAL
Position	Position	Position
Length	Density (Value)	Color Hue
Angle	Color Sat	Texture
Slope	Color Hue	Connection
Area (Size)	Texture	Containment
Volume	Connection	Density (Value)
Density (Value) ${ }^{\text {c }}$	Containment	Color Sat
Color Sat	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area (Size)	Slope
Containment	Volume	Area
Shape	Shape	Volume

Color Encoding

Area Encoding

Gene Expression Time-Series [Meyer et al '11]

Color Encoding

Position Encoding

Artery Visualization [Borkin et al '11]

Rainbow Palette
Diverging Palette

Using Space Effectively

Scales \& Axes

Include Zero in Axis Scale?

Government payrolls in 1937 [How To Lie With Statistics. Huff]

Include Zero in Axis Scale?

Yearly CO_{2} concentrations [Cleveland 85]

Include Zero in Axis Scale?

How to Scale the Axis?

userratio

One Option: Clip Outliers

userratio

Clearly Mark Scale Breaks

Violates Expressiveness Principle!

Poor scale break [Cleveland 85]

Well-marked scale break [Cleveland 85]

Scale Break vs. Log Scale

Scale Break

Log Scale
[Cleveland 85]

Scale Break vs. Log Scale

Both increase visual resolution

Scale break: difficult to compare (cognitive - not perceptual - work) Log scale: direct comparison of all data

Linear Scale vs. Log Scale

Linear Scale

Log Scale

Linear Scale vs. Log Scale

Linear Scale

Absolute change

Log Scale

Small fluctuations
Percent change
$d(10,20)=d(30,60)$

When To Apply a Log Scale?

Address data skew (e.g., long tails, outliers)
Enables comparison within and across multiple orders of magnitude.

Focus on multiplicative factors (not additive) Recall that the logarithm transforms \times to + ! Percentage change, not absolute value.

Constraint: positive, non-zero values
Constraint: audience familiarity?

Optimizing Design

Chart Design Parameters

Given a visual encoding (e.g., line chart), what aspects might affect graphical perception?

Physical Size
Aspect Ratio
Ticks, Labels, Gridlines
Line Width
Data Points (e.g., dots)
How might we determine optimized choices?

Optimization-Based Design

Determine error or energy functions for measuring the "quality" of a visualization.

Treat as an optimization objective and then solve (or search) for better chart parameters.

Examples:

Selecting axis ticks
Determining chart aspect ratio

Axis Ticks

Tick Mark Selection

 What are some properties of "good" tick marks?

Tick Mark Selection

 (a) Heckbert

 (b) R's pretty

 (c) Wilkinson

 (d) Extended
 What are some properties of "good" tick marks?

Tick Mark Criteria

Simplicity - numbers are multiples of 10,5,2 Coverage - ticks near the ends of the data Density - not too many, nor too few Legibility - whitespace, horizontal text, size

Optimization

Talbot et al '10 use a search procedure that optimizes criteria in turn (e.g., find simple numbers first, then adjust coverage, etc.).
$S=0.2$ simplicity +0.25 coverage +0.5 density +0.05 legibility

Aspect Ratio

William S. Cleveland The Elements of Graphing Data

William S. Cleveland The Elements of Graphing Data

Banking to 45° [Cleveland]

To facilitate perception of trends, maximize the discriminability of line segment orientations

Two line segments are maximally discriminable when their average absolute angle is 45° Insight: to optimize the aspect ratio, bank to 45°

Alternative: Minimize Arc Length

 while holding area constant [Talbot et al. 2011]

Straight line -> 45°

Ellipse -> Circle
— Talbot'11 -
Other Aspect Ratio Banking Methods

A Good Compromise

Arc-length banking produces aspect ratios in-between those produced by other methods.

Trends may occur at different scales!

Apply banking to the original data or to fitted trend lines.
[Heer \& Agrawala '06]

CO_{2} Measurements

William S. Cleveland Visualizing Data

Administrivia

A2: Exploratory Data Analysis

Use visualization software to form \& answer questions

First steps:

Step 1: Pick domain \& data
Step 2: Pose questions
Step 3: Profile the data Iterate as needed

Create visualizations

Interact with data
Refine your questions

Author a report

Due by 11:59pm
Friday, Apr 13

Technology Tutorial

Introduction to D3.js

Thursday, April 19-4:30-6:30pm - Sieg 134

Multidimensional Data

Visual Encoding Variables

Position (X)
Position (Y)
Size
Value
Texture
Color
Orientation
Shape
~8 dimensions?

Example: Coffee Sales

Sales figures for a fictional coffee chain
Sales
Q-Ratio
Profit
Q-Ratio
Marketing
Q-Ratio

Product Type Market

N \{Coffee, Espresso, Herbal Tea, Tea\}
N \{Central, East, South, West\}
Filters
YEAR(Date): 2010

Filters

YEAR(Date): 2010

Marks

x^{+}Automatic $\quad v$

Shape Market
Label
Color - Product Type
Size

Level of Detail

Product Type
Coffee
Espresso
Herbal Tea
Tea

Market

O Central

- East
+ South
\mathbf{X} West

YEAR(Date): 2010

Marks

```
\(x^{+}\)Automatic \(v\)
Shape Market
Label
Color • Product Type
```



```
Level of Detail
```

Product Type
\square Coffee
\square Espresso
Herbal Tea
Market
O Central
\square East

+ South

Marketing

-	\$0	\wedge
O	\$50	
	\$100	v

Trellis Plots

A trellis plot subdivides space to enable comparison across multiple plots.
Typically nominal or ordinal variables are used as dimensions for subdivision.

Small Multiples

[MacEachren '95, Figure 2.11, p. 38]

Small Multiples

[MacEachren '95, Figure 2.11, p. 38]

Scatterplot Matrix (SPLOM)

Scatter plots for pairwise comparison of each data dimension.

Multiple Coordinated Views

Linking Assists to Position

Parallel Coordinates

Parallel Coordinates [Inselberg]

Parallel Coordinates [Inselberg]

Visualize up to ~two dozen dimensions at once 1. Draw parallel axes for each variable
2. For each tuple, connect points on each axis

Between adjacent axes: line crossings imply neg. correlation, shared slopes imply pos. correlation.
Full plot can be cluttered. Interactive selection can be used to assess multivariate relationships.
Highly sensitive to axis scale and ordering.
Expertise required to use effectively!

Radar Plot / Star Graph

"Parallel" dimensions in polar coordinate space Best if same units apply to each axis

Dimensionality Reduction

Dimensionality Reduction

$$
\begin{gathered}
\because \\
\because \\
\because \\
\because
\end{gathered}
$$

- .
http://www.ggobi.org/
s.3.-0.251,-0.178(9.00)

4:-0.442,0.723(1.00)
5:0.016,0.222(1.00)

1:0.098, 0.367(242.00)

- .2:-0.157, 0.906(47.74)

6:0.726,0.461 (3.00)
7:0.424,-0.195(1.00)

Principal Components Analysis

1. Mean-center the data.
2. Find \perp basis vectors that maximize the data variance.
3. Plot the data using the top vectors.

PCA of Genomes [Demiralp et al. '13]

Time Curves [Bach et al. '16]

Circles are data cases with a time stamp. Similar colors indicate similar data cases.

Folding:

Time curve:

The temporal ordering of data cases is preserved. Spatial proximity now indicates similarity.
(a) Folding time

Wikipedia "Chocolate" Article

U.S. Precipitation over 1 Year

Many Reduction Techniques!

Principal Components Analysis (PCA)
Multidimensional Scaling (MDS)
Locally Linear Embedding (LLE)
t-Dist. Stochastic Neighbor Embedding (t-SNE)
Isomap
Auto-Encoder Neural Networks
Topological Methods

How to Use t-SNE Effectively

Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading. By exploring how it behaves in simple cases, we can learn to use it more effectively.

distill.pub

Visualizing t-SNE
 [Wattenberg et al. '16]

Original

Original

Step: 5,000

Perplexity: 2
Step: 5,000

Perplexity: 5
Step: 5,000

Perplexity: 30 Step: 5,000

Perplexity: 30
Step: 5,000

Perplexity: 50
Step: 5,000

Perplexity: 100
Step: 5,000

Visual Encoding Design

Use expressive and effective encodings Avoid over-encoding
Reduce the problem space Use space and small multiples intelligently Use interaction to generate relevant views

Rarely does a single visualization answer all questions. Instead, the ability to generate appropriate visualizations quickly is critical!

