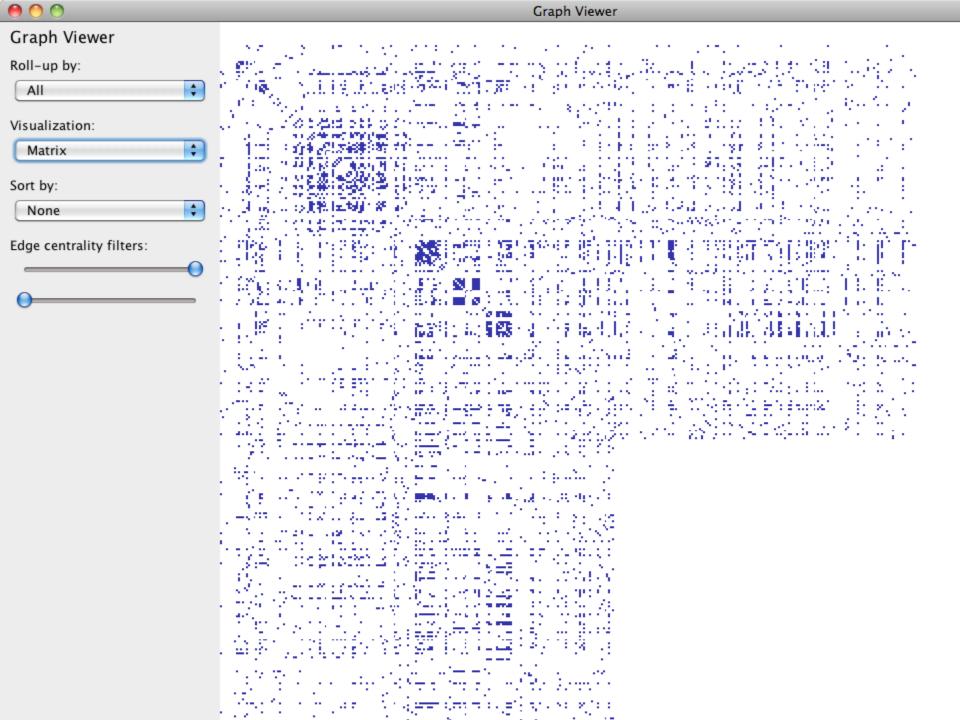
CSE 512 - Data Visualization

Multidimensional Vis

Jeffrey Heer University of Washington

Last Time: Exploratory Data Analysis

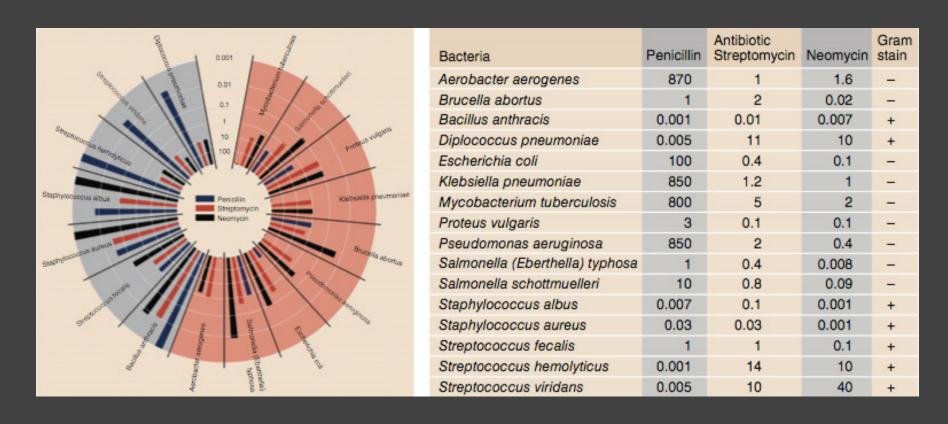
Exposure, the effective laying open of the data to display the unanticipated, is to us a major portion of data analysis. Formal statistics has given almost no guidance to exposure; indeed, it is not clear how the informality and flexibility appropriate to the exploratory character of exposure can be fitted into any of the structures of formal statistics so far proposed.



Antibiotic Effectiveness

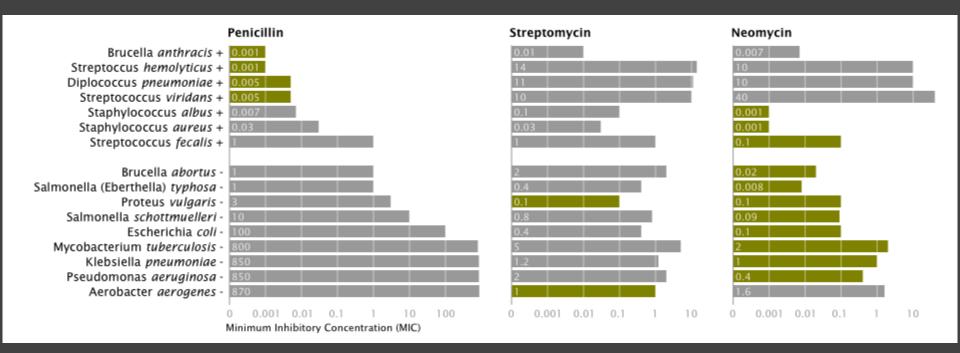
Table 1: Burtin's data.				
Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative
Salmonella schottmuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Staphylococcus aureus	0.03	0.03	0.001	positive
Streptococcus fecalis	1	1	0.1	positive
Streptococcus hemolyticus	0.001	14	10	positive
Streptococcus viridans	0.005	10	40	positive

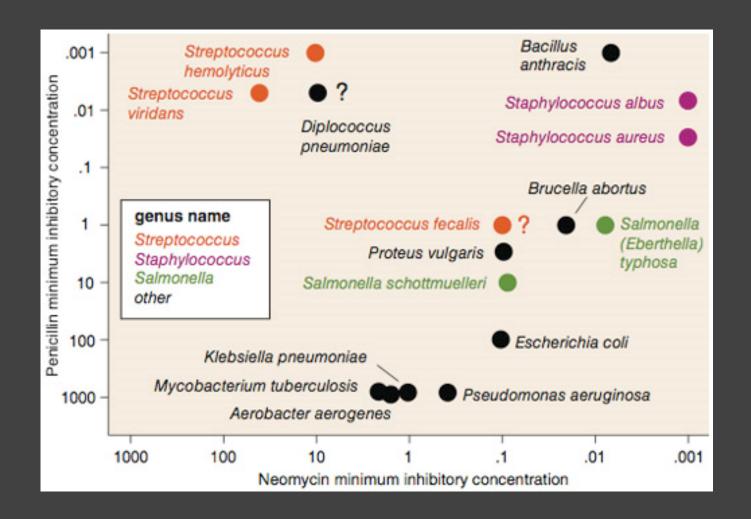
How do the drugs compare?



Original graphic by Will Burtin, 1951

How do the drugs compare?

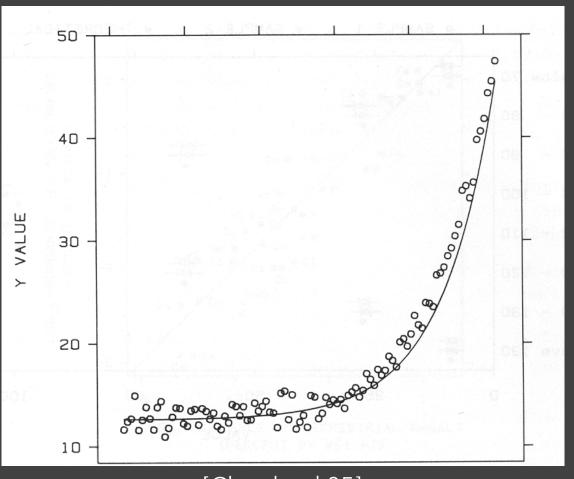




Do the bacteria group by resistance? Do different drugs correlate?

Transforming Data

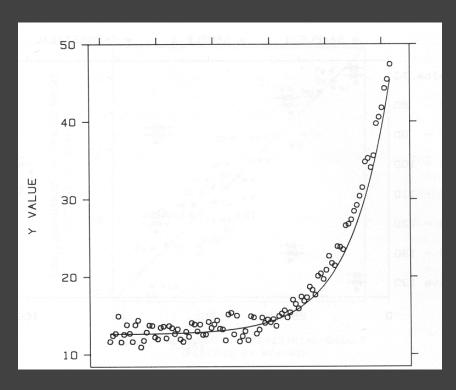
How well does the curve fit the data?

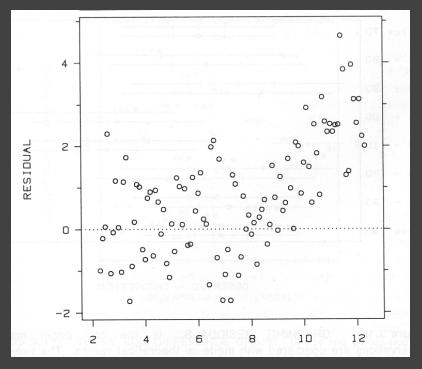


[Cleveland 85]

Plot the Residuals

Plot vertical distance from best fit curve Residual graph shows accuracy of fit

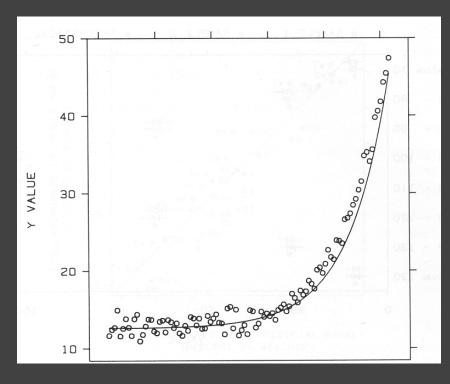


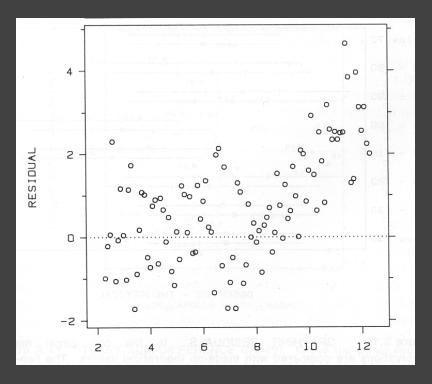


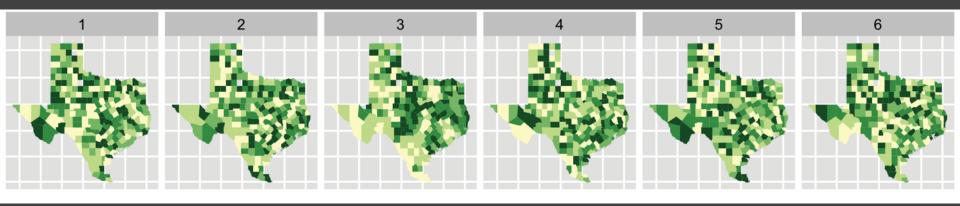
Multiple Plotting Options

Plot model in data space

Plot data in model space



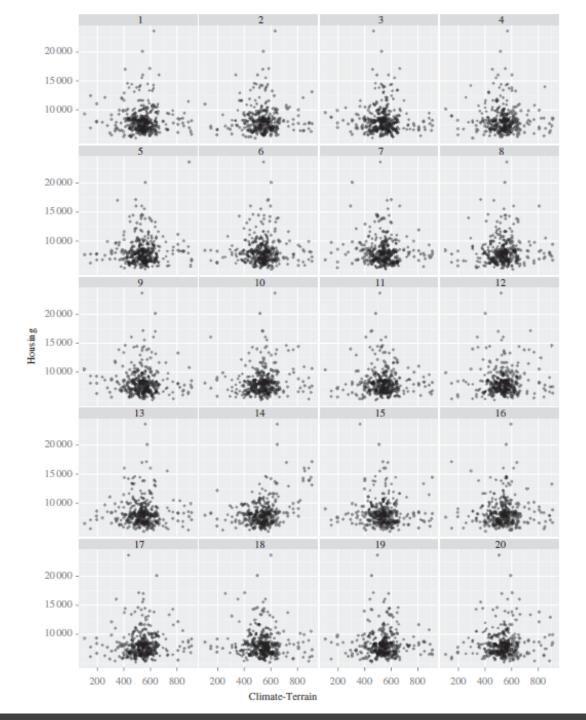


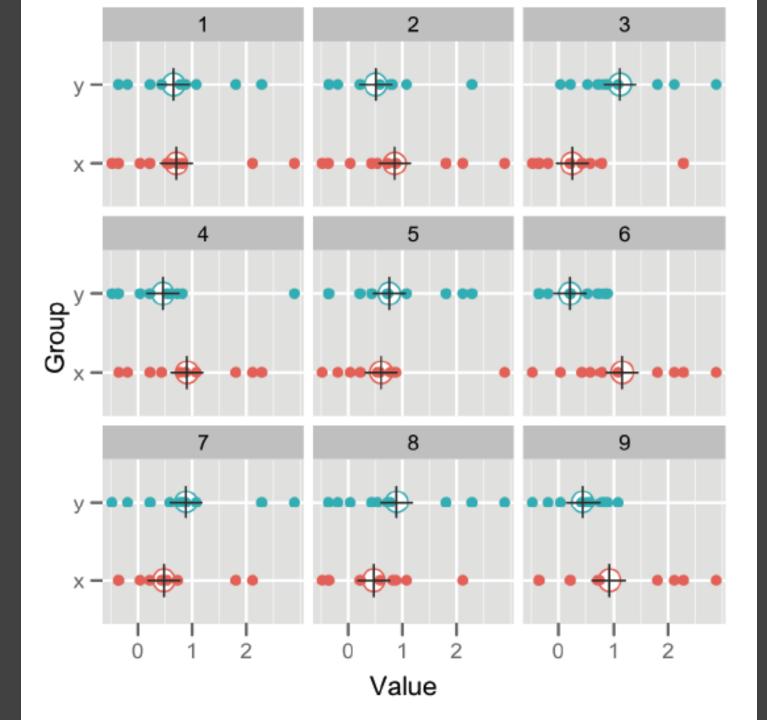


Choropleth maps of cancer deaths in Texas.

One plot shows a real data set. The others are simulated under the null hypothesis of spatial independence.

Can you spot the real data? If so, you have some evidence of spatial dependence in the data.





A2: Exploratory Data Analysis

Use visualization software to form & answer questions

First steps:

Step 1: Pick domain & data

Step 2: Pose questions

Step 3: Profile the data

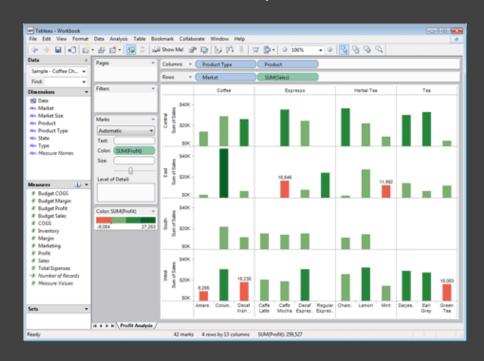
Iterate as needed

Create visualizations

Interact with data Refine your questions

Make a notebook

Keep record of your analysis
Prepare a final graphic and caption



Due by 5:00pm

Friday, April 17

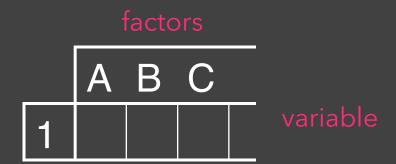
Vis Tools Tutorial

Today, Tuesday April 14
3pm to 4:30pm in CSE 305

Become a **Tableau** power user Learn **matplotlib**, valuable for iPython notebooks See **new tools** coming out of CSE research

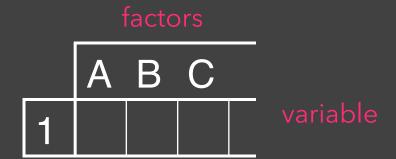
The Design Space of Visual Encodings

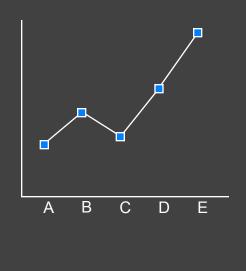
Univariate Data

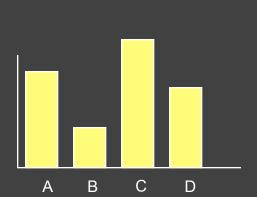




Univariate Data

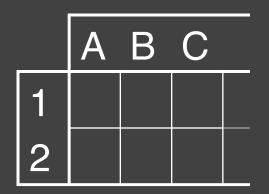


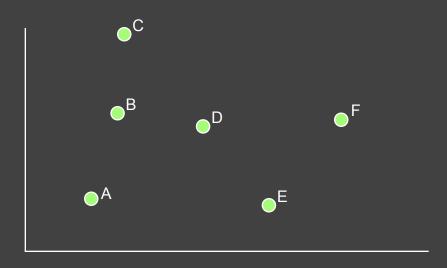




0 20

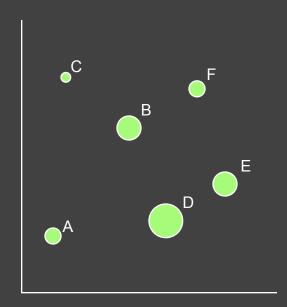
Bivariate Data

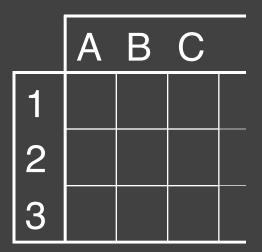




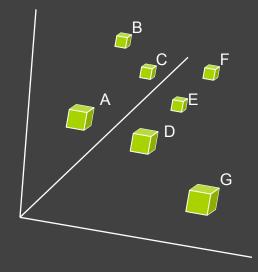
Scatter plot is common

Trivariate Data





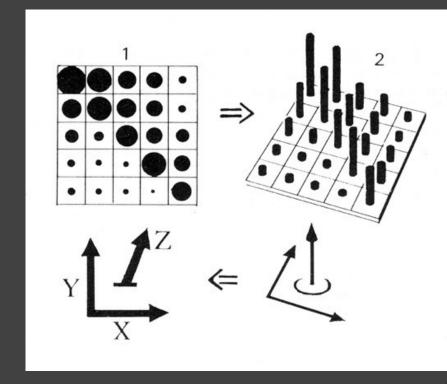
3D scatter plot is possible



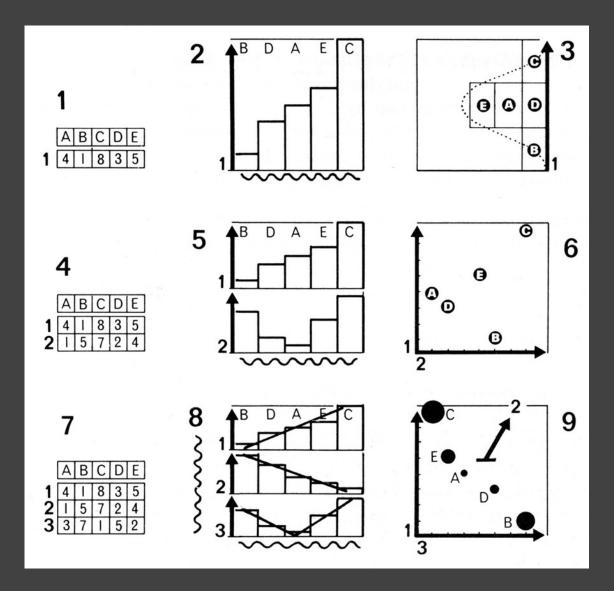
Three Variables

Two variables [x,y] can map to points Scatterplots, maps, ...

Third variable [z] must use Color, size, shape, ...



Large Design Space



[Bertin, Graphics and Graphic Info. Processing, 1981]

Multidimensional Data

How many variables can be depicted in an image?

	Α	В	С	
1				
2				
1 2 3 4 5 6				
4				
5				
6				
7 8				
8				

Multidimensional Data

How many variables can be depicted in an image?

"With up to three rows, a data table can be constructed directly as a single image ... However, an image has only three dimensions. And this barrier is impassible." - Bertin

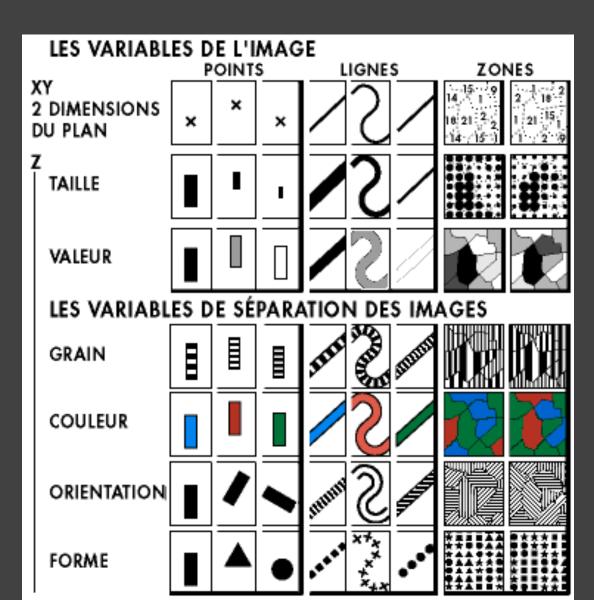
	Α	В	С	
1				
2				
3				
4				
5				
6				
2 3 4 5 6 7 8				
8				

Multidimensional Data

Visual Encoding Variables

Position (X)
Position (Y)
Size
Value
Texture
Color
Orientation
Shape

~8 dimensions?



Example: Coffee Sales

Sales figures for a fictional coffee chain

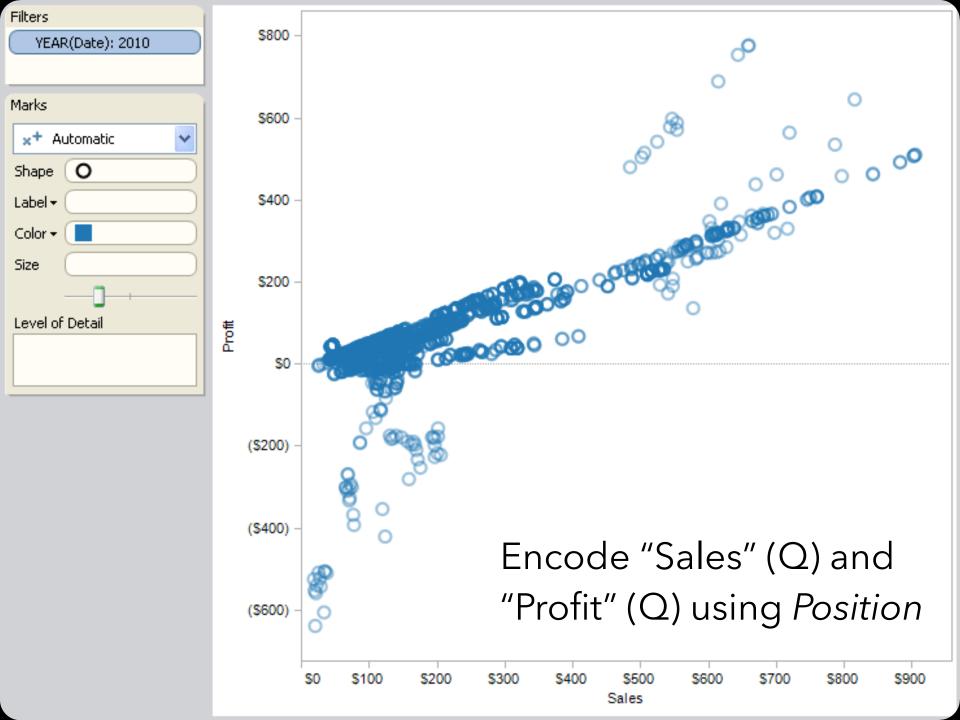
Sales Q-Ratio

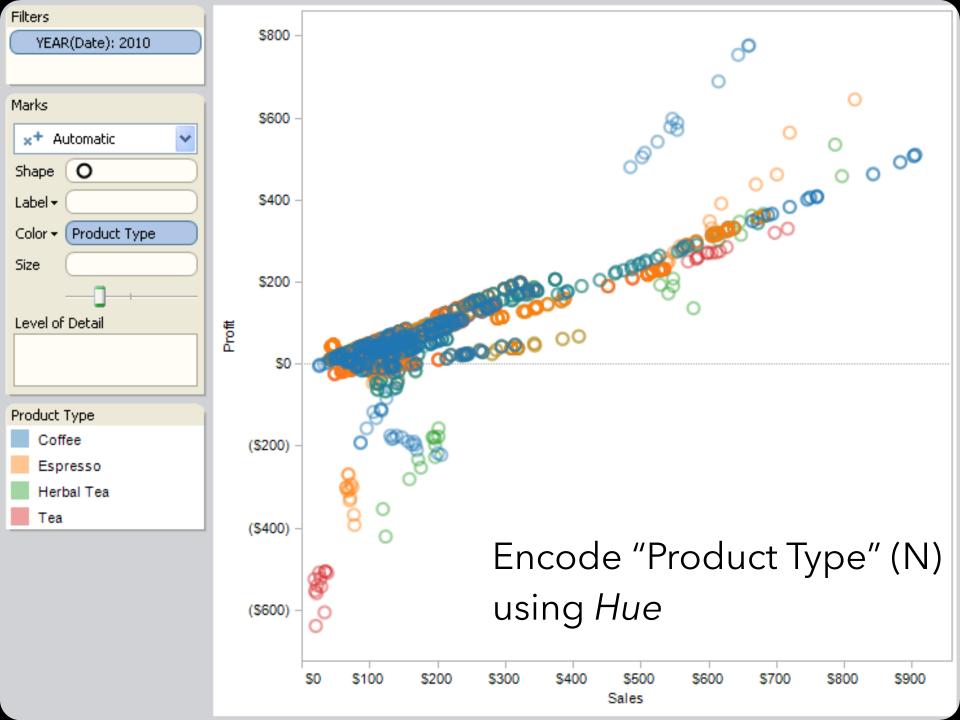
Profit Q-Ratio

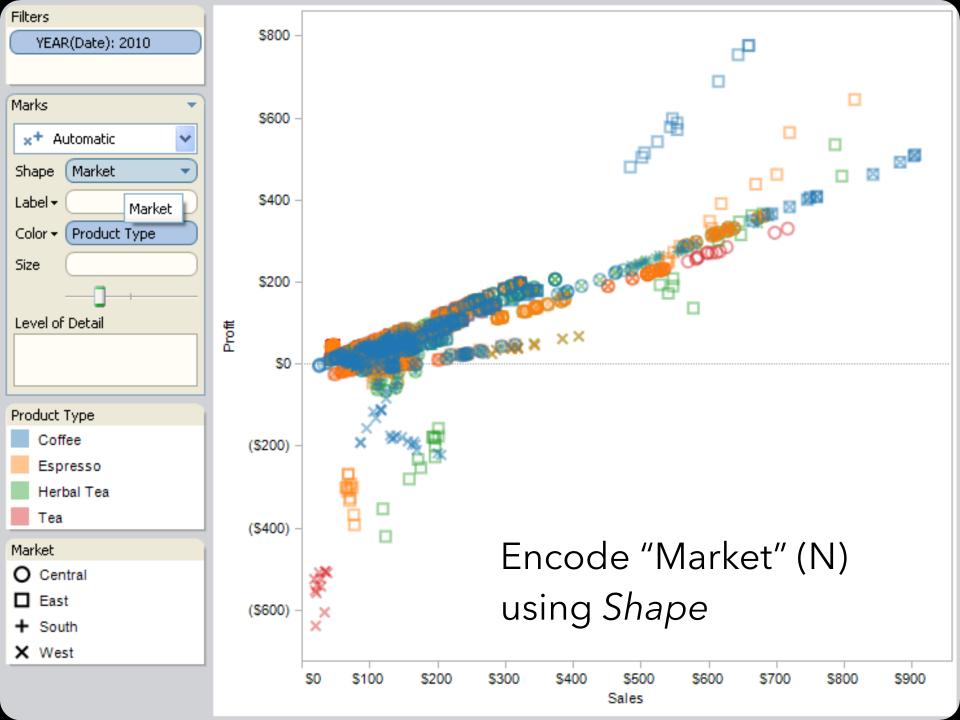
Marketing Q-Ratio

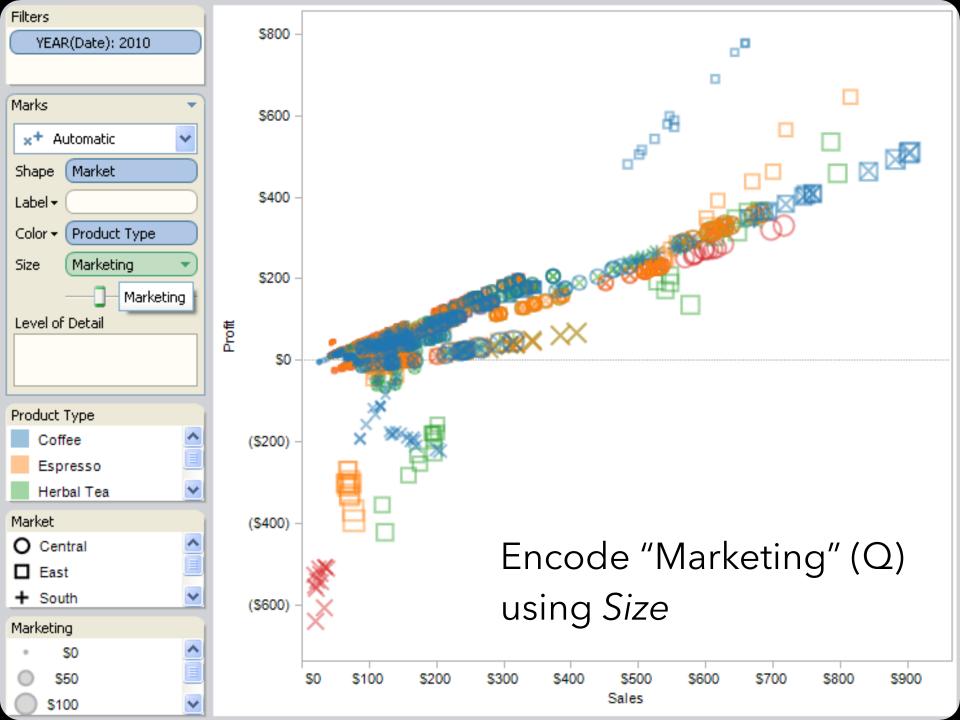
Product Type N {Coffee, Espresso, Herbal Tea, Tea}

Market N {Central, East, South, West}

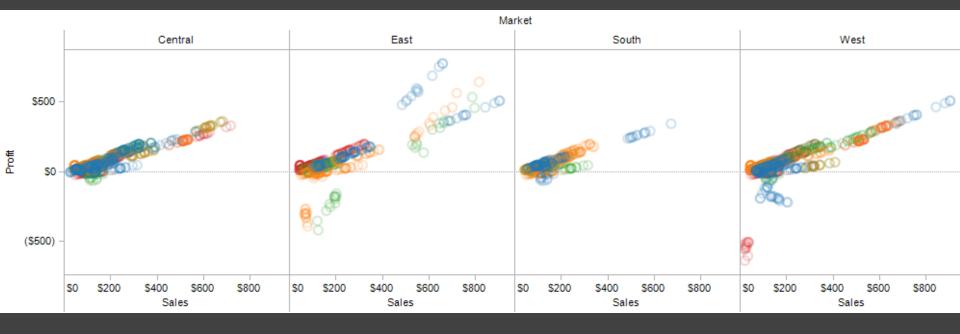








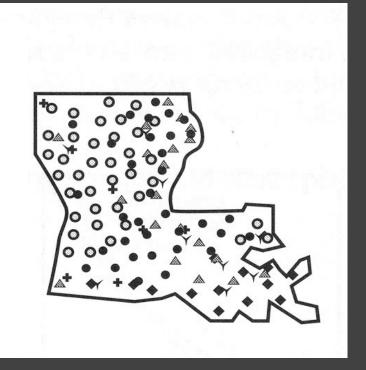
Trellis Plots



A trellis plot subdivides space to enable comparison across multiple plots.

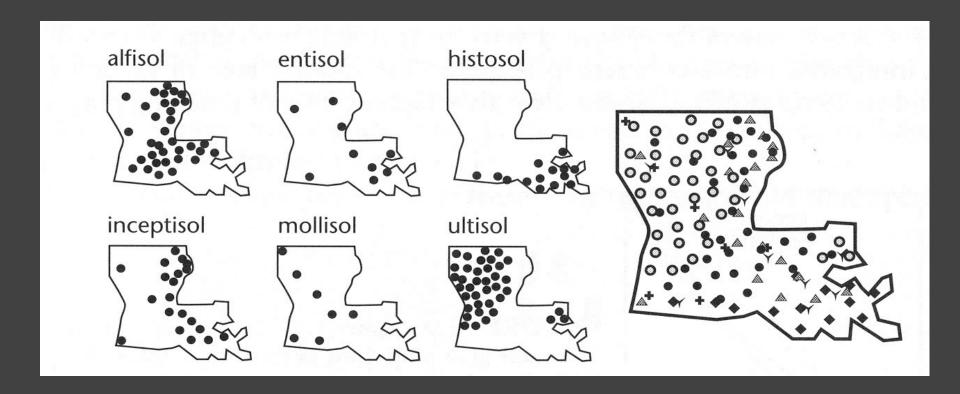
Typically nominal or ordinal variables are used as dimensions for subdivision.

Small Multiples



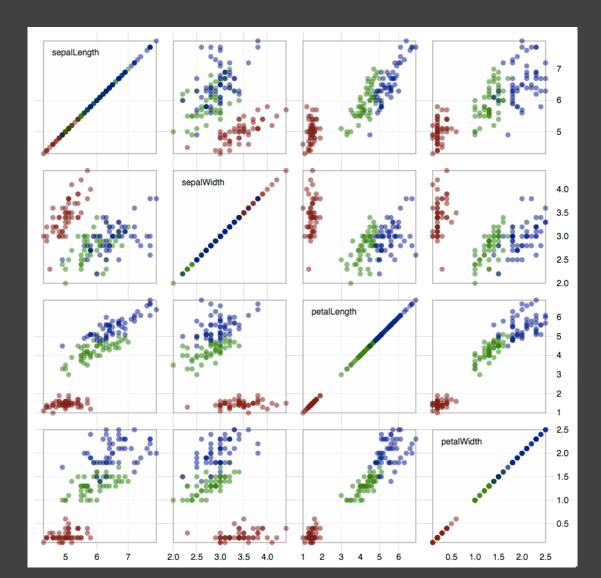
[MacEachren 95, Figure 2.11, p. 38]

Small Multiples

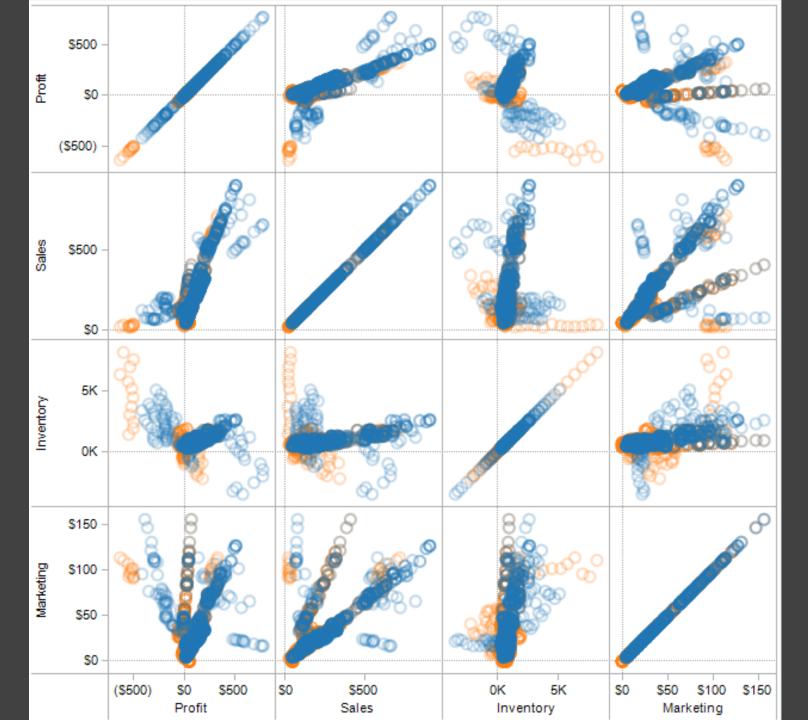


[MacEachren 95, Figure 2.11, p. 38]

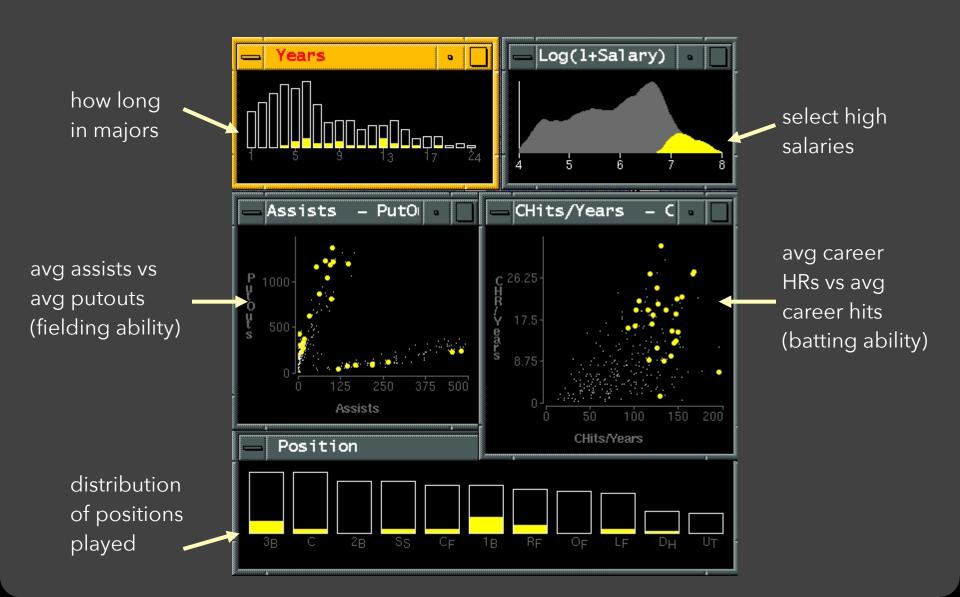
Scatterplot Matrix (SPLOM)



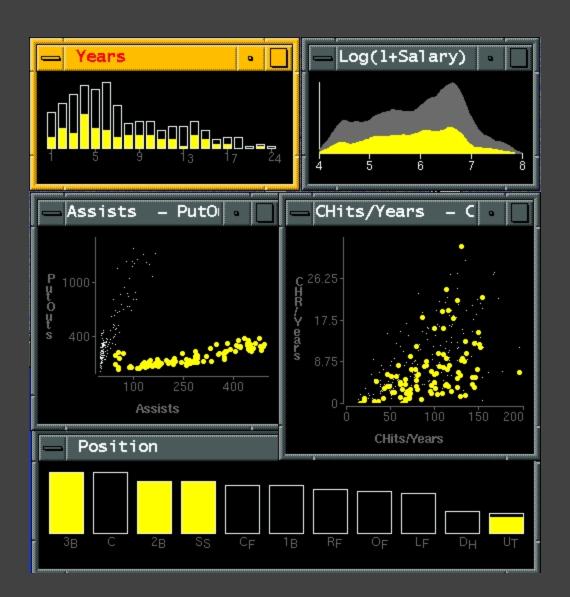
Scatter plots for pairwise comparison of each data dimension.

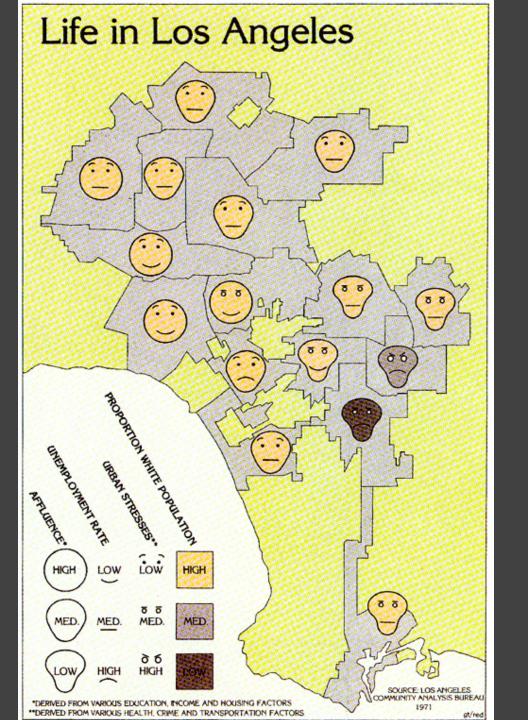


Multiple Coordinated Views



Linking Assists to Position

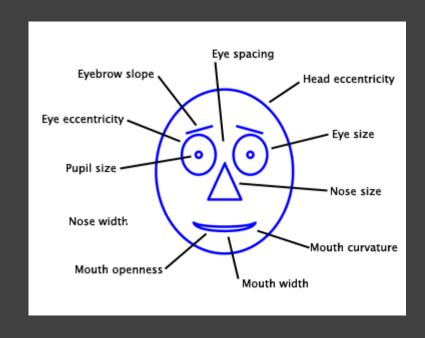




Chernoff Faces

Observation: We have evolved a sophisticated ability to interpret faces.

Idea: Map data variables to facial features.



Question: Do we process facial features in an uncorrelated way? (i.e., are they separable?)

This is just one example of nD "glyphs"

Visualizing Multiple Dimensions

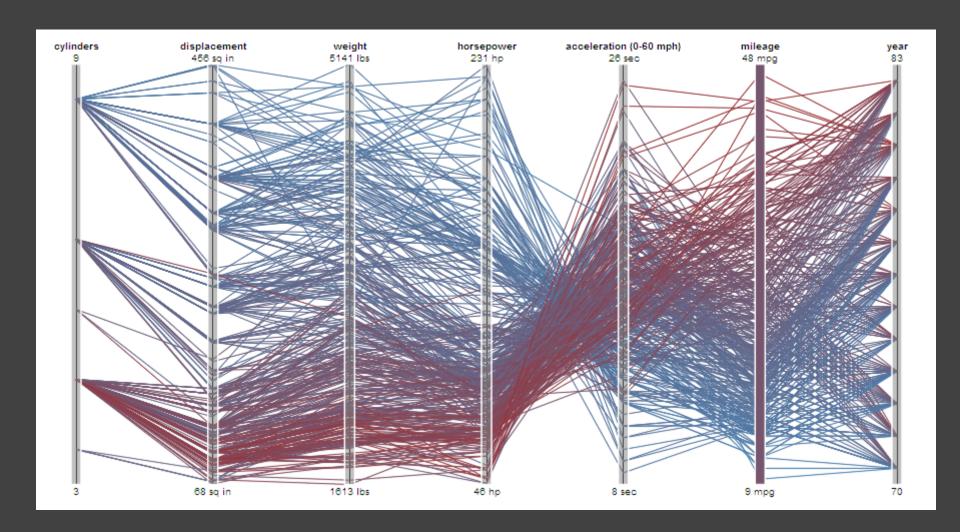
Strategies:

Avoid "over-encoding"
Use space and small multiples intelligently
Reduce the problem space
Use interaction to generate *relevant* views

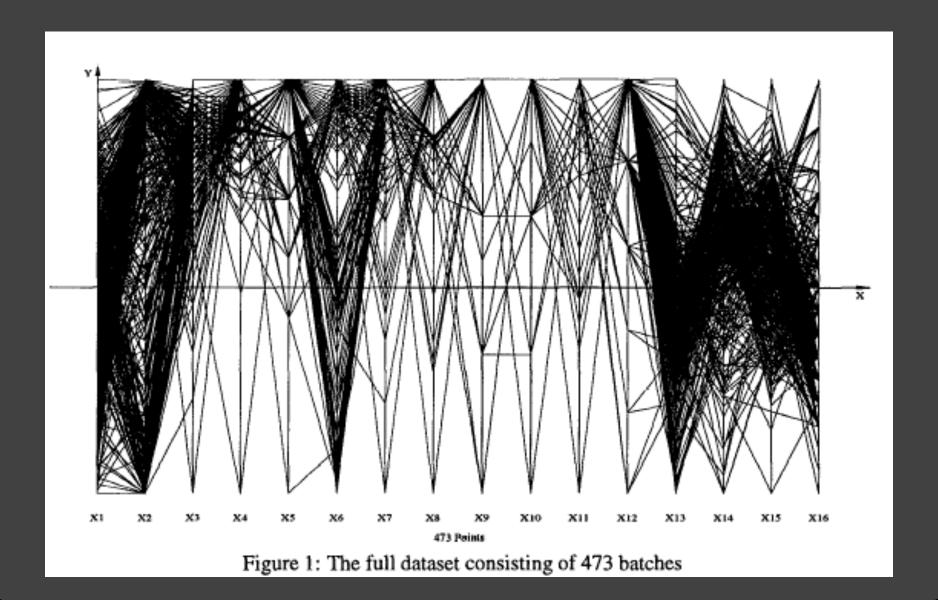
Rarely does a single visualization answer all questions. Instead, the ability to generate appropriate visualizations quickly is key.

Parallel Coordinates

Parallel Coordinates [Inselberg]



Parallel Coordinates [Inselberg]



The Multidimensional Detective

Production data for 473 batches of a VLSI chip

16 process parameters

X1: The yield: % of produced chips that are useful

X2: The quality of the produced chips (speed)

X3-12: 10 types of defects (0 defects shown at top)

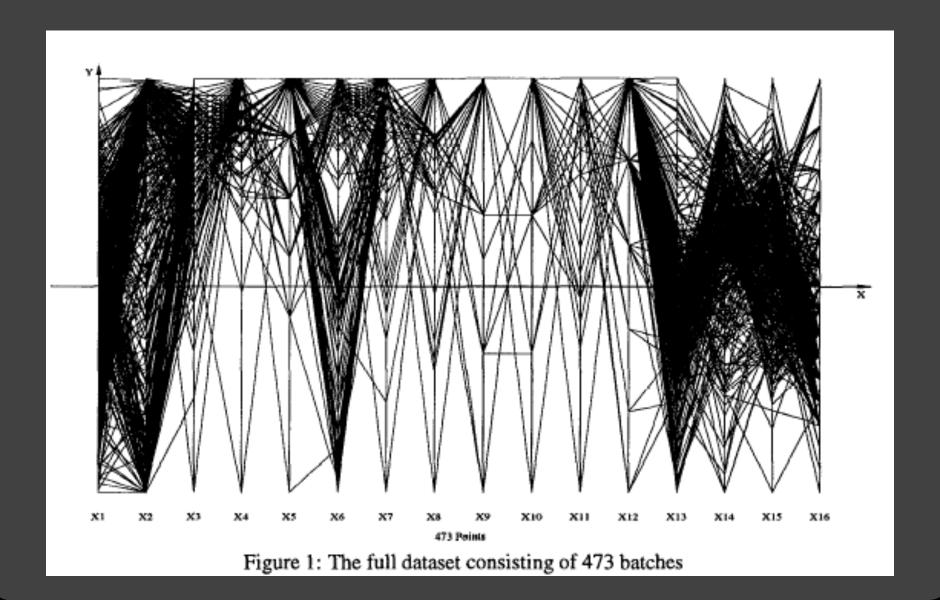
X13-16: 4 physical parameters

Objective:

Raise the yield (X1) and maintain high quality (X2)

A. Inselberg, Multidimensional Detective, Proc. IEEE InfoVis, 1997

Parallel Coordinates [Inselberg]



Inselberg's Principles

- 1. Do not let the picture scare you.
- 2. Understand your objectives. Use them to obtain visual cues.
- 3. Carefully scrutinize the picture.
- 4. Test your assumptions, especially the "I am really sure of's".
- 5. You can't be unlucky all the time!

Each line represents a tuple (e.g., VLSI batch) Filtered below for high values of X1 and X2

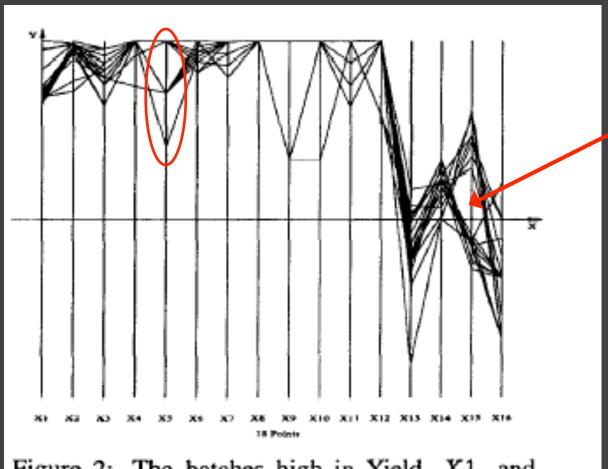


Figure 2: The batches high in Yield, X1, and Quality, X2.

Look for batches with *nearly* zero defects (9/10) Most of these have low yields -> defects OK.

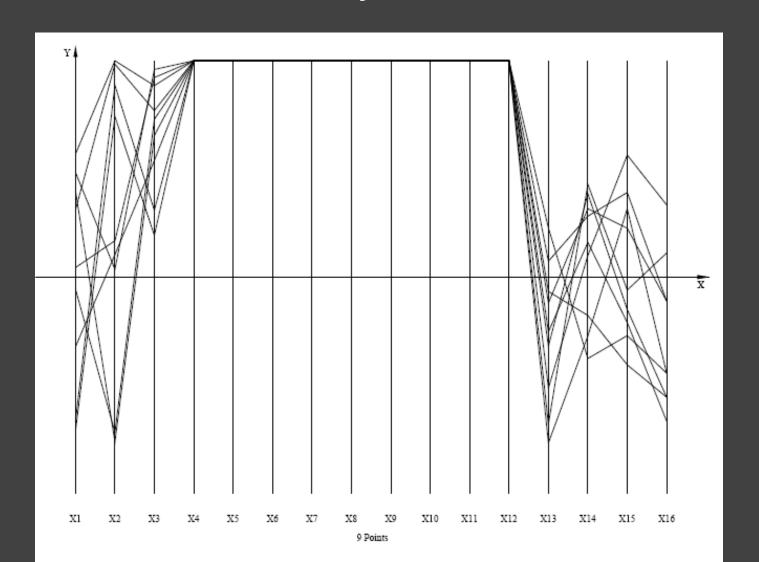
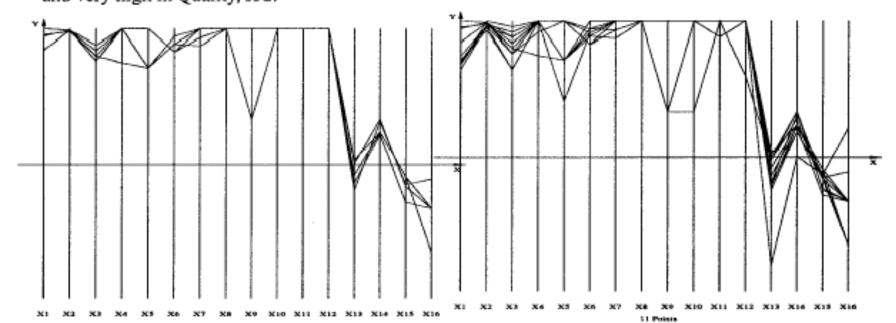


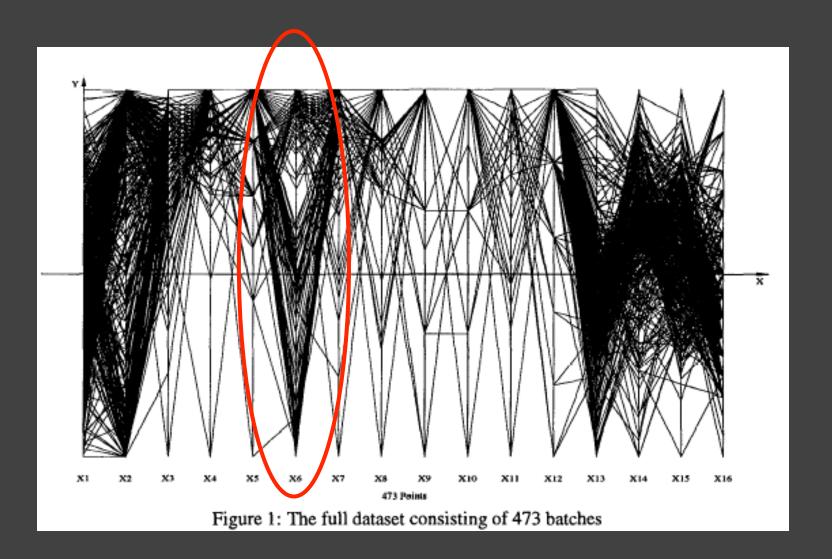


Figure 5: The best batch. Highest in Yield, X1, and very high in Quality, X2.

Figure 7: Upper range of split in X15

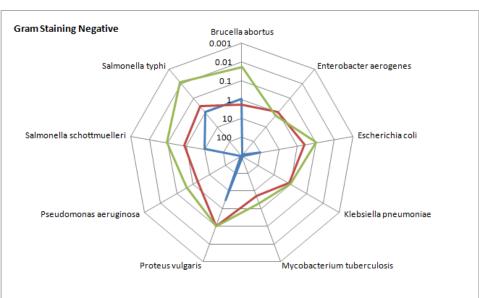


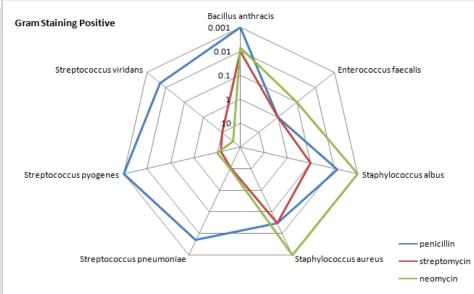
Notice that X6 behaves differently. <u>Allow 2 defects, including X6 -> best batches</u>



Radar Plot / Star Graph

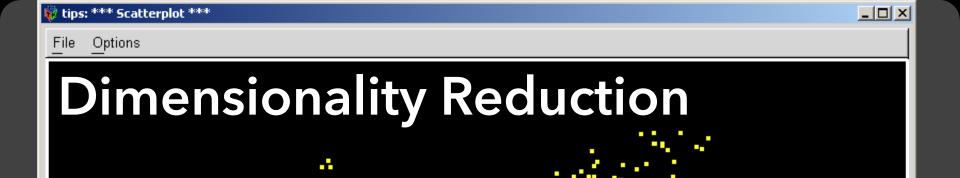
Antibiotics MIC Concentrations





"Parallel" dimensions in polar coordinate space Best if same units apply to each axis

Dimensionality Reduction



http://www.ggobi.org/

1:0.099,0.367(243.00)

2:-0.157,0.106(47.74)

3:-0.251,-0.178(9.00)

4:-0.442,0.723(1.00)

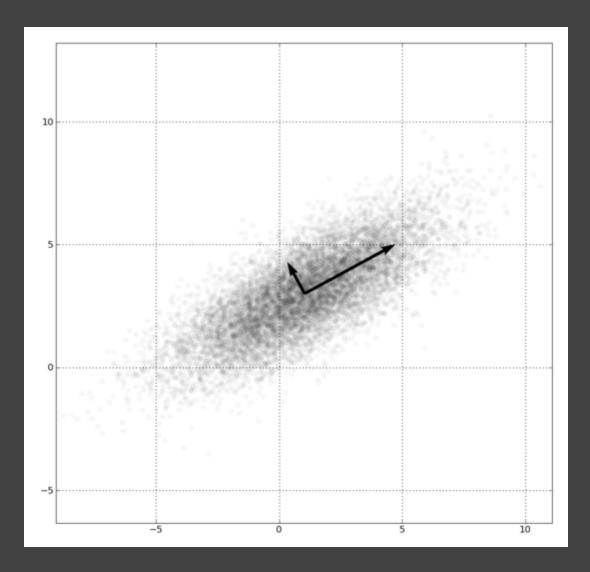
5:0.016,0.222(1.00)

6:0.726,0.461(3.00)

7:0.424 ;-0.195(1.00)

5 1

Principal Components Analysis



- 1. Mean-center the data.
- 2. Find ⊥ basis vectors that maximize the data variance.
- 3. Plot the data using the top vectors.

PCA on Genetic Sequences

Many Reduction Techniques!

Principal Components Analysis (PCA)

Multidimensional Scaling (MDS)

Locally Linear Embedding (LLE)

t-Dist. Stochastic Neighbor Embedding (t-SNE)

Isomap

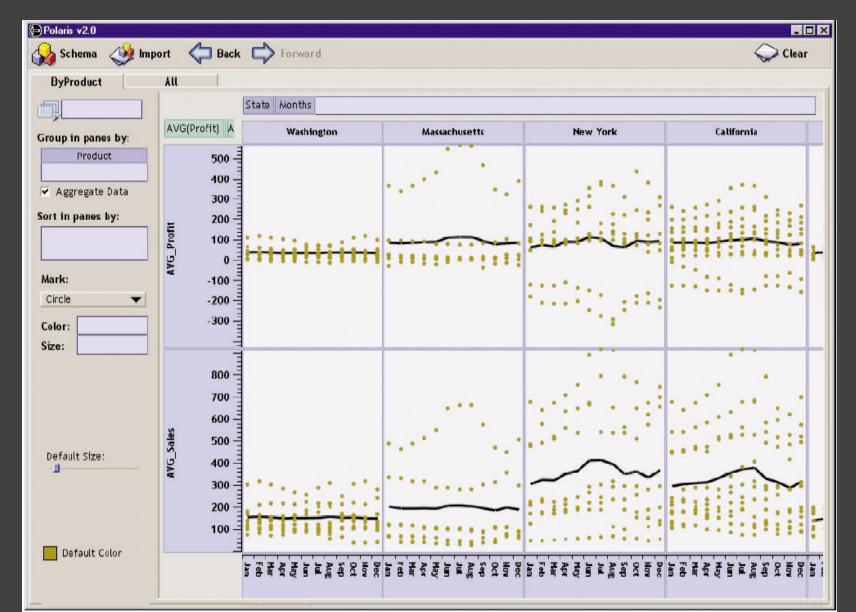
Auto-Encoder Neural Networks

Topological methods

. . .

Tableau / Polaris

Polaris [Stolte et al.]



Tableau

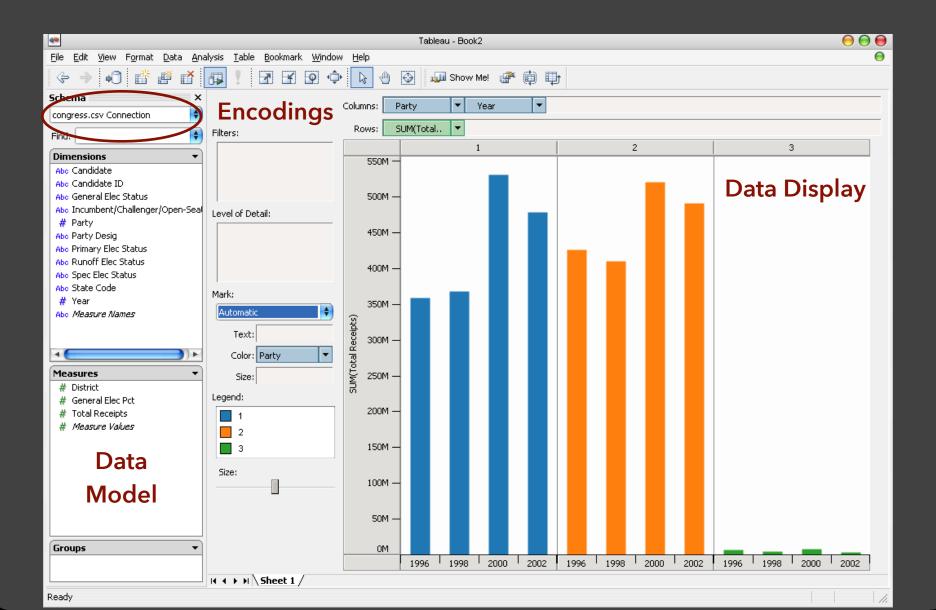


Tableau Demo

The dataset:

Federal Elections Commission Receipts

Every Congressional Candidate from 1996 to 2002

4 Election Cycles

9216 Candidacies

Dataset Schema

```
Year (Qi)
Candidate Code (N)
Candidate Name (N)
Incumbent / Challenger / Open-Seat (N)
Party Code (N) [1=Dem, 2=Rep, 3=Other]
Party Name (N)
Total Receipts (Qr)
State (N)
District (N)
```

This is a subset of the larger data set available from the FEC.

Hypotheses?

What might we learn from this data?

Hypotheses?

What might we learn from this data?

Correlation between receipts and winners?

Do receipts increase over time?

Which states spend the most?

Which party spends the most?

Margin of victory vs. amount spent?

Amount spent between competitors?

Tableau Demo

Tableau/Polaris Approach

Insight: can simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa

Use smart defaults for visual encodings

More recently: automate visualization design

Specifying Table Configurations

Operands are the database fields

Each operand interpreted as a set {...}

Quantitative and Ordinal fields treated differently

Three operators:

```
concatenation (+)
cross product (x)
nest (/)
```

Table Algebra: Operands

Ordinal fields: interpret domain as a set that partitions table into rows and columns.

 $Quarter = \{(Qtr1), (Qtr2), (Qtr3), (Qtr4)\} ->$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

Quantitative fields: treat domain as single element set and encode spatially as axes.

 $Profit = \{(Profit[-410,650])\} ->$

Concatenation (+) Operator

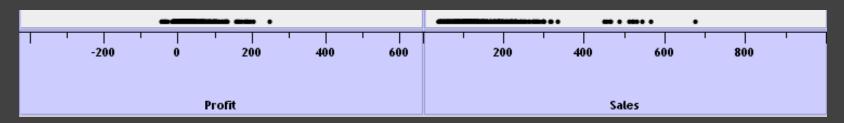
Ordered union of set interpretations

Quarter + Product Type

- $= \{(Qtr1),(Qtr2),(Qtr3),(Qtr4)\} + \{(Coffee),(Espresso)\}$
- $= \{(Qtr1), (Qtr2), (Qtr3), (Qtr4), (Coffee), (Espresso)\}$

Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso
48	59	57	53	151	21

Profit + Sales = $\{(Profit[-310,620]),(Sales[0,1000])\}$



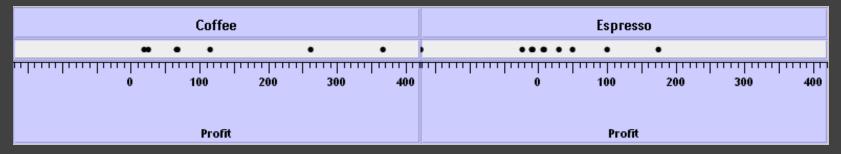
Cross (x) Operator

Cross-product of set interpretations

```
Quarter x Product Type =
{(Qtr1,Coffee), (Qtr1, Tea), (Qtr2, Coffee), (Qtr2, Tea), (Qtr3, Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4, Tea)}
```

Qt	г1	Qtr2 Qtr3		r3	Qtr4		
Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso
131	19	160	20	178	12	134	33

Product Type x Profit =



Nest (/) Operator

Cross-product filtered by existing records

```
Quarter x Month ->
creates twelve entries for each quarter. i.e.,
(Qtr1, December)
```

Quarter / Month ->
creates three entries per quarter based on tuples in database (not semantics)

Table Algebra

The operators (+, x, /) and operands (O, Q) provide an *algebra* for tabular visualization.

Algebraic statements are then mapped to:

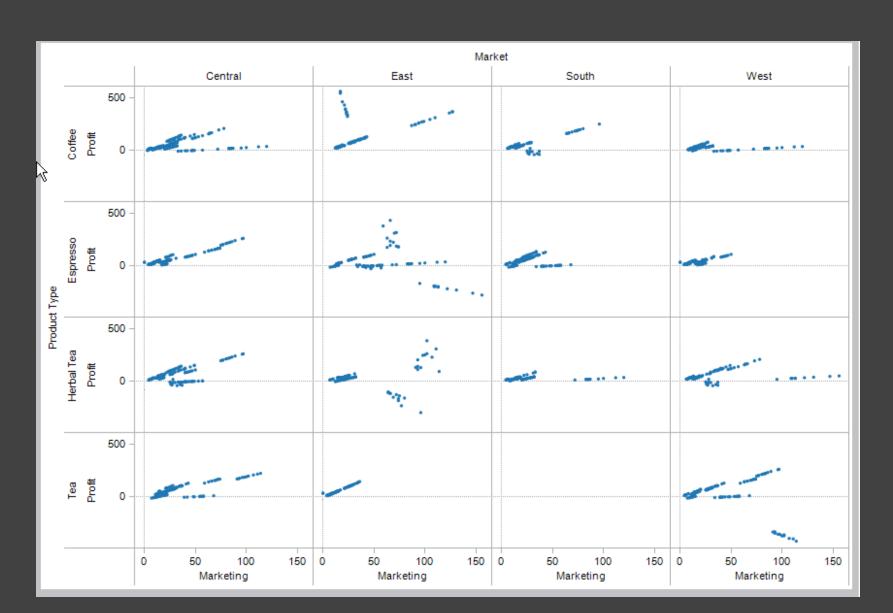
Visualizations - trellis plot partitions, visual encodings **Queries** - selection, projection, group-by aggregation

In Tableau, users make statements via drag-and-drop Note that this specifies operands *NOT* operators! Operators are inferred by data type (O, Q)

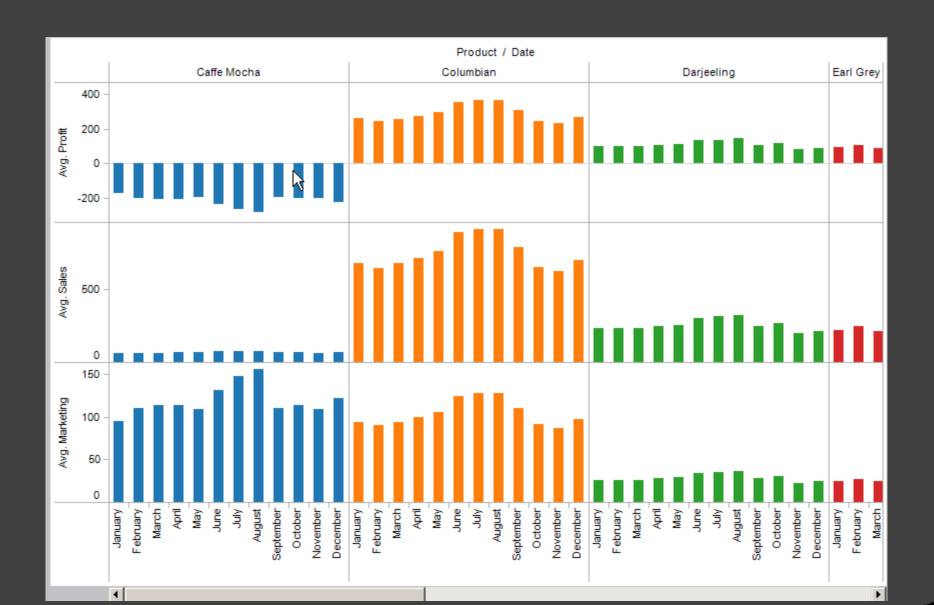
Ordinal-Ordinal

_	Product Type				
State	Coffee	Espresso Her	bal Tea	Tea	
Colorado	•	•	•	•	
Connecticut	•	•	•	•	
Florida	•	•	•	•	
Illinois			•	•	
Iowa	•	•			
Louisiana	•	•	•		
Massachusetts	•	•	•	•	
Missouri	•	•	•	•	
Nevada	•	•			
New Hampshire	•	•	•	•	
New Mexico	•	•	•		
New York		•			
Ohio	•	•	•	•	
Oklahoma	•	•	•		
Oregon	•	•	•		
Texas		•	•		
Utah	•	•	•	•	
Washington	•	•	•	•	
Wisconsin	•	•	•	•	

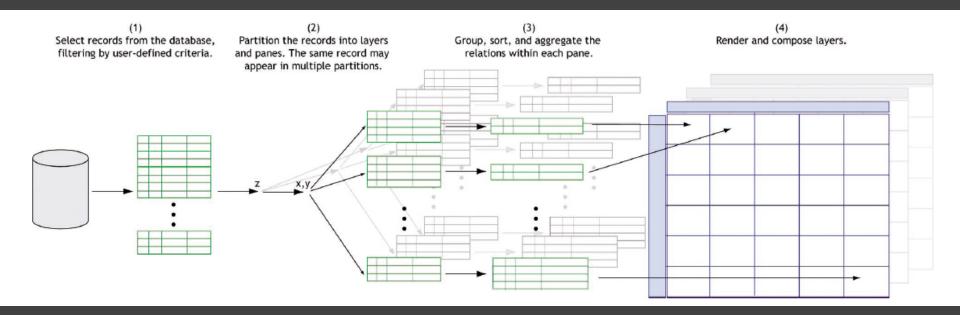
Quantitative-Quantitative



Ordinal-Quantitative



Querying the Database



Visualizing Multiple Dimensions

Strategies:

Avoid "over-encoding"
Use space and small multiples intelligently
Reduce the problem space
Use interaction to generate *relevant* views

Rarely does a single visualization answer all questions. Instead, the ability to generate appropriate visualizations quickly is key.