Evaluation
How do we determine if a visualization is “effective”?
Example: Tree Browsers
Evaluation Methods

Inspection or Principled Rationale
Apply design heuristics, perceptual principles

Informal User Study
Have people use visualization, observe results

Controlled Experiment
Choose appropriate tasks / users to compare
Choose metrics (time, error, what else?)
Evaluation Methods

Field Deployment or Case Studies
Observation and Interview
Document effects on work practices

Theoretical Analysis
Algorithm time and space complexity

Benchmarks
Performance (e.g., interactive frame rates)
Scalability to larger data sets
Topics

Evaluating Focus + Context Visualizations
Evaluating Time-Series Visualizations
Perceptual Organization of Graphs
Contextual Effects on Visualization Use
Discussion and Course Evaluation
The Great CHI’97 Browse-Off

vs.

The Contest Winner!
Can we conclude that the hyperbolic tree is the better browser?
No. At least not yet...

Different people operating each browser. “Is it the car or the driver?”

Tasks were not ecologically valid.

Xerox PARC researchers conducted eye-tracking studies to investigate...

[Pirolli, Card, & van der Wege, AVI 2000]
Task Types

Simple retrieval tasks – “Find Lake Victoria”

Complex retrieval tasks – “Which army is led by a Generalissimo?”

Local relational tasks – “Which religion has the most holidays?”

Complex relational tasks – “Which Greek deity has the same name as a space mission?”
Ambiguity and Information Scent

Which tree branch would you follow to answer these questions?

“Find a hammer”

vs.

“What's the highest rank in the British Royal Air Force?”
Initial Results: No Difference?

<table>
<thead>
<tr>
<th>Question Type</th>
<th>Explorer (sec)</th>
<th>Hyperbolic (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieval Tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td>35.55</td>
<td>34.37</td>
</tr>
<tr>
<td>Complex</td>
<td>41.55</td>
<td>42.02</td>
</tr>
<tr>
<td>All retrieval</td>
<td>38.55</td>
<td>38.20</td>
</tr>
<tr>
<td>Comparison Tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>42.78</td>
<td>41.91</td>
</tr>
<tr>
<td>Global</td>
<td>71.07</td>
<td>73.19</td>
</tr>
<tr>
<td>All comparison</td>
<td>56.93</td>
<td>57.55</td>
</tr>
<tr>
<td>All questions</td>
<td>47.74</td>
<td>47.87</td>
</tr>
</tbody>
</table>
Operationalizing Scent

How useful is a text label on a node?

Information scent = the proportion of participants who correctly identified the location of the task answer from looking at upper branches in the tree.
Length of eye movements

![Bar graph showing length of eye movements for high and low scents. The graph indicates a significant difference in length between the high and low scent conditions.](graph.png)
Adaptive Field of View?
More Evaluations

vs.
Evaluation of DOITrees

DOITree vs. Windows Explorer [Budiu, AVI 06]

Nodes visited (avg): DOI 83 Exp 53 \(p < .005 \)
Revisititation (avg): DOI 6.60 Exp 8.15 \(p < .005 \)
Divergence (avg): DOI 4.57 Exp 3.96 \(p < .001 \)

DOITree more forgiving to navigation errors

BUT no significant difference in task time

DOITree vs. Google Directory [Pirolli, CHI 06]

DOITree has superior task knowledge transfer
Lessons Learned

Both the task and data properties (in this case information scent) may interact with the visualization type in unexpected ways.

Equal performance in terms of accuracy or response time is not the whole picture. In this case, we saw differences in learning effects.
An Evaluation of Pan & Zoom and Rubber Sheet Navigation with and without an Overview

Dmitry Nekrasovski, Adam Bodnar, Joanna McGrenere, François Guimbretière, Tamara Munzner
Pan and Zoom / Rubber Sheet Navigation

(i) PZN

(ii) RSN
Experimental Task

Compare topological distance between nodes in a dendrogram.

Figure 2: Illustration of the experimental task on a small tree. Subjects were asked to determine whether the pink node (labeled X) was closer to the blue node (labeled Y) or the green node (labeled Z) in terms of topological distance. In this case, the green node (Z) is closer.
Condition 1: Rubber Sheet – No Overview
Condition 2: Pan & Zoom - No Overview
Condition 3: Rubber Sheet with Overview
Condition 4: Pan & Zoom with Overview
Experiment

Compare performance in 4 conditions:
1. Pan and Zoom (no overview)
2. Pan and Zoom (with overview)
3. Rubber Sheet (no overview)
4. Rubber Sheet (with overview)

40 subjects (24F/16M), between 18-39 years old. Right-handed, normal vision.
Between-subjects design.
Hypotheses

1. RSN interfaces perform better than PZN interfaces independently of the presence or absence of an overview.
2. For RSN, the presence of an overview does not result in better performance.
3. For PZN, the presence of an overview results in better performance.
Results – H₁ False

Figure 7: Mean completion times per trial for each interface by block in seconds (N=40).
Results – H2 True, H3 False

Figure 9: Block 7 mean per-trial completion times in seconds by navigation technique with and without an overview.
Results

R1. Pan & Zoom had lower completion times, navigation actions, resets, and reported mental demand.

R2. Overview has no significant impact on rubber sheet navigation, though it was reported to reduce physical demand.

R3. Overview has no significant impact on pan & zoom navigation, though it was reported to reduce physical demand.
Thoughts?

Does this generalize for overview displays?
Evaluating Data-Dense Time Series Visualizations
Data Density = \(\frac{\text{(# entries in data)}}{\text{(area of graphic)}} \)

“Graphical excellence... gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space”

Tufte ‘83
Time-Series Visualization
Relative Technology Stock Performance: Jan 2008 - Present
Horizon Graphs
Mirror Horizon Graph

Offset Horizon Graph
Relative Technology Stock Performance: Jan 2008 - Present

AMZN
CSCO
GOOG
IBM
INTC
MSFT
NOK
ORCL
QCOM
YHOO
Relative Technology Stock Performance: Jan 2008 - Present
Relative Technology Stock Performance: Jan 2008 - Present
Experiment 1
Horizon Graph Variants
Exp 1: Mirror/Offset & Banding

Q1: How does the choice of mirrored or offset horizon graph affect estimation time and accuracy?

Mirror Horizon Graph

Offset Horizon Graph
Exp 1: Mirror/Offset & Banding

Q1: How does the choice of mirrored or offset horizon graph affect estimation time and accuracy?

Q2: How does the number of bands in a horizon chart affect estimation time and accuracy?
Experiment 1 Design

2 (type) x 3 (band count) within-subjects design

- N = 18 (13 male, 5 female), UCB students
- Deployed on the web as a Flash applet
Estimate the difference between T and B (0-200) to within 5 values.
Experiment 1 Results

Q1: No significant difference between mirrored and offset horizon graphs.

Q2: Both estimation time and error increased with more bands.

→ Higher band counts led to difficulty identifying bands and fatigue from mental mathematics.
Experiment 2
Chart Type and Size
Exp 2: Chart Type & Size

Q1: How do mirroring and layering affect estimation time and accuracy compared to line charts?

Q2: How does chart size affect estimation time and accuracy?
Experiment 2 Design

3 (chart type) x 4 (size) within-subjects design

- N = 30 (17 male, 13 female), UCB undergrads
- 14.1 inch LCD display at 1024 x 768 pixel resolution
- At scale = 1, chart was 13.9 x 1.35 cm (48 pixels)
Experiment 2 Design

3 (chart type) x 4 (size) within-subjects design
- N = 30 (17 male, 13 female), UCB undergrads

2 (chart type) x 3 (size: 1/8, 1/12, 1/24) follow-up study
- N = 8 (6 male, 2 female), UCB engineering grads
Virtual Resolution (VR)

The un-mirrored, un-layered height of a chart

\[VR = h \]

\[VR = 2h' = h \]

\[VR = 4h'' = h \]
Experiment 2 Results

Q1: 2-band horizon graph (but not mirrored graph) had higher baseline estimation time and error.

Q2: Estimation error increased as the *virtual resolution* decreased.
Estimation time decreased as the *physical height* decreased.
Design Implications

Mirroring does not hamper perception
Design Implications

Mirroring does not hamper perception

Layered bands beneficial for smaller charts

2-band mirror charts more accurate for heights under 6.8mm (24 pixels @ 1024x768)

Predict benefits for 3 bands under 1.7mm (6 px)
Design Implications

Mirroring does not hamper perception
Layered bands beneficial for smaller charts

Optimal chart sizing

Sweet spots in time/error curves
- 6.8mm (24 px) for line chart & mirrored chart
- 3.4mm (12 px) for 2-band horizon graph
Administrivia
Final Project

Poster Presentations
Session is Thu Mar 13 5-8pm in CSE Atrium
Bring Poster + Laptop/Device for demos
Arrive early to setup!

Post Webpage on GitHub Pages
List team members, title, abstract, link to paper
Include summary image for project!

Final Project Reports
Due Thu Mar 20, by 7am, posted to GitHub
4-6 pages in ACM or IEEE TVCG format
Perceptual organization of graphs

Circular

Force-Directed
Experiment Design

Factors
Circular or Force-Directed Seed Layout
of Between-Cluster Edges ("masking")
 All graphs had two primary clusters

Measures
of Edge Crossings
Average Edge Length
Average Node Distance
 within or between clusters
Figure 4. Edge Crossings. Human observers produced graph layouts with fewer edge crossings than the force-directed graph algorithm.
Figure 5. Edge Length Distribution. Human observers did not focus on maintaining equal edge length as much as the force directed algorithm.
Figure 7. Cluster Extraction. For all levels of masking, the distance between nodes within a cluster is significantly smaller than the overall inter-node distance, demonstrating perceptual grouping. Error bars show 95% confidence intervals.
Figure 9. Cluster Hulls. Two examples of user-generated layouts where cluster edges formed a hull enclosing the cluster, organizing it into a single perceptual group.
The role of environment [Reilly 07]
The slider was used to control the bidirectional morph. Shape blending (distortion) and alpha blending occurred simultaneously, in proportion to the distance of the slider from each endpoint.

The Tube map was at the left endpoint of the morph.
The right endpoint showed the tourist map.
Summary

Design and analyze visualization techniques in context of real-world use

Time/error analyses can be insightful, but they don’t provide a complete picture.

Performance measures may be more suited to serious analysis than casual use?
Course Summary
Data and Image Models

Sémiologie Graphique [Bertin 67]
Visualization (Re-)Design

Problematic design

Redesign
Visualization Software

D3: Data-Driven Documents
The psychophysics of sensory function [Stevens 61]
Color

CIE 1931 xy chromaticity diagram showing the gamut of the sRGB and Adobe RGB color spaces including the Planckian locus, with temperatures indicated. Wavelengths of monochromatic light are shown in blue.

Color Brewer
Interaction

Crimespotting.org
Animation

Animated transitions in statistical data graphics [Heer & Robertson 07]
Mapping / Cartography

Dymaxion Maps [Fuller 46]
Graphs and Trees

Degree-Of-Interest Trees [Heer & Card 04]
Graphs and Trees
Text Visualization
Collaboration and History

Where have all the dentists gone?
The Future of Visualization

Where is more work required?

What emerging technologies and societal trends will impact visualization design?

What did you find most difficult in creating visualizations and designing techniques?
Thank You!

I didn't have anything useful to say so I made this pie chart.

Oooh!

It must be true because it's pie.

Oooh!

That worked too well.

I pledge my life and my fortune to the pie!
Course Evaluation
Course Evaluation

Official campus course evaluation
Complete in class, then give to Ham.
Your opinion is valued!