Interacting with Cameras

Hrvoje Benko
Microsoft Research

UW CSE 510 – February 9, 2016
Papers assigned

Pick one:

Class Outline

• Motivation
• Basic camera processing
• Applications:
 • Cameras as rapid prototyping tools
 • Touch tracking
 • 3D gestures + mid-air interactions
 • Device tracking/sensor fusion
• Challenges with Designing Sensing Systems
WHY SENSE WITH CAMERAS?
Cameras enable novel interactive experiences
Visual appearance
Visual appearance
Interactivity
How we see the computer!
How the computer sees us!

Tom Igoe and Dan O’Sullivan - Physical Computing.
Human Computer Interaction
Human Computer Interaction
Myron Krueger’s Videoplace

CAT’S CRADLE
MicroMotoCross

A. Wilson, ACM ITS 2007
Beach Ball
Discussion

How much of this vision is realized today?

What about occlusions, accidental activation?

Do we need this? Are we close to “paperless office”?

What about AR/VR?
Typical Pipeline

1. Segment foreground from background
2. Cluster foreground pixels into “blobs”
3. Track blobs over time
Image Segmentation

Thresholding based on intensity (or color)
Blob tracking
Surface Computing

MS Surface

PerceptivePixel
Cursors considered harmful

Pulling out discrete contact points is an *ill-posed* problem
Leads to all sorts of mayhem!
Other things to track

Edges

Motion
Other things to track

Features
Corners, lines,
SIFT, SURF, etc.
Trick of the trade: Spectrum separation

Move sensing into infrared!
Ideal Pinhole Camera Model
Real cameras

Have lenses
Distortions
Focal lengths
Principle points
Calibration

Requires defining:

- Intrinsic parameters (focal length, image format, principal point)
- Lens distortion (usually non-linear)
- Extrinsic parameters (R, T)

Most projects start by using:

NON-STANDARD “CAMERAS”
Touch Sensors as Cameras

Rekimoto, SmartSkin, CHI 2002
Projectors as Inverted Cameras

Wilson, PlayAnywhere, UIST 2005
Fast Framerate

ROI tricks on CMOS cameras
Line cameras (PhaseSpace)
Near vs. Far Infrared

Requires light source
Reflected radiation

Thermal imaging
Emissive radiation
HeatWave

Depth sensing cameras

Color + depth per pixel: RGBZ

Can compute world coordinates of every point in the image directly.
Depth Camera Flavors

- Stereo
- Structured light
- Time of flight
Correlation-based stereo cameras

Binocular disparity

ZED Stereo Camera www.stereolabs.com
Point Grey Research www.ptgrey.com
Correlation-based stereo
Stereo drawbacks

- Requires good texture to perform matching
- Computationally intensive
- Fine calibration required
- Occlusion boundaries
- Naïve algorithm very noisy
Structured light depth cameras
Known Projected IR pattern
Object = disturbance
Depth by structured light coding

- Expect a certain pattern at a given point
Depth by structured light coding

- Expect a certain pattern at a given point
- Find how far this pattern has shifted
- Relate this shift to depth (triangulate)
Kinect v1

Fast
Computationally inexpensive
The object needs to be big enough to contain enough pattern to encode itself
- Edges noisy, surfaces smooth
Time of Flight Depth Cameras

Infrared camera + GaAs solid state shutter
RGB camera
Pulsed infrared lasers

Kinect v2
3DV, Canesta (no-longer public)
SoftKinectic http://www.softkinetic.com
PMD Technologies http://www.PMDTec.com
Mesa Technologies http://www.mesa-imaging.ch
Time of flight measurement
Why sense with depth cameras?

Easier segmentation

Easier understanding of physical objects in space.

Real world units.

Skeletal tracking (from limited viewpoints).
Applications
CAMERAS ENABLE RAPID PROTOTYPING OF INTERACTIVE DEVICES
Figure 2. When designing with Sauron, a designer begins with his model (A), then inserts a virtual camera and runs quick check for visibility (B). A full model modification pass (C) performs extrusions and suggests mirror placement to bring invisible controls into the camera’s view. He fabricates his design (D), then colors the inside and inserts the camera and mirrors (E). The computer vision software tracks the motion of components (F) and forwards events on to control software, such as a game.
INTERACTIONS IN MID AIR
Minority Report

2002
Challenges

Fatigue
Precision
Feedback
Selection
Three vs. Two states model

- How to “click”?
- How to “clutch”?

Pinching Detection

Wilson, A. Robust Vision-Based Detection of Pinching for One and Two-Handed Input, UIST 2006.
Skeleton tracking (Kinect)
Skeletal Tracking - How it works

1. Classify each pixel’s probability of being each of 32 body parts
2. Determine probabilistic cluster of body configurations consistent with those parts
3. Present the most probable pose to the user

Hand Tracking

Leap Motion Controller:
2 IR cameras
3 IR LEDs
Alternate approach...

Use all the information from the camera. Do not require a reduced representation. Make it analog to real world.

Kruger, Videoplace ‘85
LightSpace

Andy Wilson
Hrvoje Benko
Microsoft Research

UIST 2010
Related

Underkoffler & Ishii, CHI ’98

Raskar et al., SIGGRAPH ’98

Pinhanez, UBICOMP ’01
TOUCH ON EVERY SURFACE
Surface determined empirically

Camera at 0.75m above table

At 0.75m ~6mm
At 1.5m ~30mm

Wilson, ACM ITS 2010
But this works for static surfaces only!
What about dynamic surfaces?
OmniTouch
Wearable Multitouch Interaction Everywhere

Chris Harrison
cris.harrison@cs.cmu.edu

Hrvoje Benko
benko@microsoft.com

Andrew Wilson
awilson@microsoft.com

Microsoft

Carnegie Mellon University

Harrison, Benko, and Wilson, ACM UIST 2011
Tracking high-level constructs (fingers)

- Take only the ends of objects with physical extent ("fingertips")
- Detect contact ("click")
- Refinement of position while clicked ("drag")
Example Interactions

Harrison, Benko, and Wilson, ACM UIST 2011
“Click” Spatial Accuracy

Four test surfaces:
- On body (hand)
- Object held in hand (note pad)
- Fixed surface in the environment (wall)
- Also added arm
6048 click trials
Click Spatial Accuracy

With 0.5s timeout rejection ~ 98.9% click accuracy
INTERACTING WITH 3D OBJECTS
Interactions in the Air: Adding Further Depth to Interactive Tabletops

How to see a virtual 3D object in your hand?

How to manipulate it using the full dexterity of your hand?
MirageTable
Discussion

• How do you evaluate the quality of a prototype system? (Does it even make sense to do so?)

• What are the limitations of using physics engine to drive interactions?
Surface Physics Widgets

Surface Physics Widgets
Challenges with depth cameras

Hands are deformable
 • Dynamic meshes are not supported

Depth cameras do not give you lateral forces
 • Can’t place torque on an object

Lack of force feedback
 • Grasping is tricky
Discussion

- How do you evaluate the quality of a prototype system? (Does it even make sense to do so?)

- What are the limitations of using physics engine to drive interactions?

- What the teleconference in the future look like? VR? AR?
Chasing Richer Telepresence

Room2Room
Enabling Life-Size Telepresence in a Projected Augmented Reality Environment

Tomislav Pejša, Julian Kantor, Hrvoje Benko, Eyal Ofek, Andrew D. Wilson
Microsoft Research

ACM CSCW 2016

Pejsa, T., Kantor, J., Benko, H., Ofek, E., and Wilson, A. Room2Room CSCW 2016.
SENSOR FUSION: CAMERAS + OTHER SENSORS
Multimodal Sensor Fusion
CrossMotion

Fusing Device and Image Motion for User Identification, Tracking and Device Association

Andrew D. Wilson and Hrvoje Benko
Microsoft Research

ACM ICMI 2014
Discussion

• How “accurate” is CrossMotion?

• What are the limitations?

• What is the difference between tracking and identification?

• What makes this approach practical? Impractical?

• Can you think of other application areas particularly suited for CrossMotion?
MAKING SENSING SYSTEMS USABLE
Transition in How We Think About Interfaces

Interaction as Execution and Evaluation (Norman 1990)

Interaction as Conversation

Command line
GUI

Speech Interfaces
Ubiquitous Computing
Human Robot Interactions
Tangible Interfaces
Virtual/Augmented Reality
Conversations are not always specific

Potentially imprecise
Multimodal
Context is important
Not all options are visible/discoverable
Bellotti et al.: Five questions for designers of sensing systems

Address
Attention
Action
Alignment
Accident

Bellotti et al: Five questions

Address:
- How do I address the system
- How do I address one (or more) of the many possible devices?
- How not to address the system?

GUI: keyboard, mouse, physical access

Sensing systems: Deal with signal vs. noise
- Magic keyword ("Alexa", "Xbox", "Siri")
- Magic pose (Xbox: hand in front of the body)

Bellotti et al: Five questions

Attention:
• How do I know the system is ready and attending to my actions?

GUI: graphical feedback, conventions (blinking cursor)

Sensing systems:
• What is appropriate feedback for mid-air interaction?

Bellotti et al: Five questions

Action:
- How do I effect a meaningful action?
- How to control its extent?
- How to specify a target or targets for my action?

GUI: click to select, click+drag to multiple select, etc.

Sensing Systems:
- Selection mechanism?

Bellotti et al: Five questions

Alignment:
• How do I know the system is doing (has done) the right thing?

GUI: feedback conventions, progress bars, drag+drop interactions, etc.

Sensing Systems: How to make system state perceivable, or query-able?
Bellotti et al: Five questions

Accident:
- How do I avoid mistakes?

GUI: Direct manipulation, Undo, Delete, Preview actions.

Sensing Systems:
Unintended actions? How to undo? How to cancel action in progress?
SUMMARY
Camera sensing...

... enables high-bandwidth interactions!

... enables rich virtual/augmented reality!

... enables rapid interactive device prototyping!

... is easily combined with other sensors!