Breaking Down Barriers in the Biology Lab

Larry Arnstein

Stefan Sigurdsson

University of Washington

Computer Science & Engineering
{larrya,stebbi}@cs.washington.edu

INTRODUCTION

The Workshop on Building the Ubiquitous Computing User Experience aligns perfectly with the research approach we are taking on the Labscape project: to understand how the user experience is directly related to, and enabled by, the properties of the underlying software infrastructure for ubiquitous computing. We strongly believe that we must advance both research agendas together to produce truly generalizable results. By participating in the workshop, we hope to encourage and benefit from others efforts to combine HCI and software infrastructure issues in their research.

In Labscape, we are integrating the physical and information spaces of two biology laboratories, initially to enable the capture of experimental procedures as they are performed. Other applications will be added over time. The biology laboratory is an ideal environment for testing and advancing ubiquitous computing technologies because of the high degrees of user and device mobility, extreme device heterogeneity, shared work areas and devices, and the need for simultaneous physical and mental concentration. A mitigating factor on all of this complexity is that it is a well structured and goal oriented environment in which progress can be evaluated, and in which the potential benefits of success are unbounded.

Just like the theme of this workshop, there are two primary research thrusts in Labscape: The first is the highly domain specific question of how and what data should be captured in the physical context of performing an experiment -- this is both a data representation and a user-experience issue. The second question is how to obtain good system properties in distributed laboratory environments characterized by high degrees of device and personal mobility. For this application, security, reliability, and functional extensibility and reusability are some of the most important properties.

THE PROTOTYPE

The current implementation of Labscape consists of two major components that reflect the above decomposition: the Step Editor Service and the Service Composition Framework. The Step Editor Service includes a domain specific multi-modal fusion component that combines events from a variety of devices and direct input modes to construct a graph based formal representation of lab activity called a sample flow graph or (SFG).

The other major feature of our prototype, the domain independent service composition framework, is being developed in cooperation with the Portolano program. One of the most important features of the framework is support for very late binding of service instances, in response to events in the environment. Late-binding provides the underlying flexibility and adaptability that is needed to support our scenarios. The service composition framework is a work in progress that has been demonstrated with Labscape at the IEEE Workshop on Mobile Computing Systems and Applications, WMCSA 2000 to show how it can enable experiment capture in lab environments housing many mobile users and with shared devices and work-areas. We now describe these two major facets of Labscape in more detail, and what we have learned from preliminary deployment and testing.

User Experience

User experience includes both the higher-level operating paradigm that defines how physical events and human inputs are combined to produce coherent interlinked data sets, and the lower-level user interface problem of how to implement that paradigm. We have designed an operating paradigm for Labscape and we are in the process of user interface design.

The operating paradigm that we have defined is based primarily on ethnographic observation and interviews. Rather than viewing lab work as a set of experiments with discrete beginnings and ends, our system is based on the concept of sessions. In a session, named samples of material held in tagged containers are subject to a set of primitive operations such as liquid transfer, thermal incubation, centrifuge, agitation, and separation. The interlinked structure of the captured SFGs directly reflects the material flow between sessions. It is up to the lab worker to define the beginnings and ends of sessions primarily for the purpose of defining the scope of local names. There is no correlation between sessions and experiments, they are simply different views into the same database.

The user paradigm is implemented by the Step Editor service that can accept typed events from many sources. Table 1 shows examples of three event sources and the event data that they can produce. These events are be fused by Step Editor, to produce a an SFG entry. The graph shown represents the transfer of a quantity of solution between two locally named containers each having only one well. This example exhibits the characteristics of redundancy, complementarity, and contradiction in the event stream that typify multi-modal user interfaces. One early finding is that temporal ordering of events is more important in the fusion algorithm than temporal proximity. This result is contrary to pen-and-speech fusion research that has found temporal proximity to be more important than strict ordering.

Based on our preliminary results, the research challenges that we expect to face are the lower-level user interface aspects of the deployment of this system and how it must be enabled by the software operating environment or software infrastructure. Some of the key elements are error handling and user feedback through ambient I/O resources; end user extensibility and customizability of the devices and software services in the lab; low impact instrumentation of the lab and of the lab worker; and the distributed systems infrastructure challenges associated with mobile devices, mobile workers, task specific work areas, and wide and local area collaboration.

Table 1. Events Sources, Event Data, and the corresponding SFG entry

	Voice
	“this is tube one” by userid@yourdomain.edu
“transferring 65 micro-liters from tube-1 to tube-2” by userid@yourdomain.edu

	
	

	Electronic Pipetter
	“Aspirated 90 micro liters using device pipetter27@csi.washington.edu by userid@yourdomain.edu”

“Dispensed 67 micro liters p1@csi.washington.edu by userid@yourdomain.edu”

	Tag Reader
	“scanned <GUID> by
RFIDreader63@
csi.washington.edu”

	

INFRASTRUCTURE

Some of the principal characteristics of ubiquitous computing that are amply demonstrated in the biology laboratory environment are: interaction with, and among a variety of autonomous devices; high level services composed of many lower level ones; low latency event handling; integration of UI methods and ambient interfaces; the need for high degrees of customization, reconfiguration and incremental programming at varying skill levels; and the need to provide information access in the context of physical activity.

One of the major conclusions from a 1995 Working Group Report on Electronic Notebooks is that the concept of an electronic lab notebook is not an application in the traditional sense--it is a collection of services and devices that will be different in every lab, and possibly for every user. Thus, we need to provide basic services along with mechanisms to composed them into more sophisticated ones, and to support various degree of programmability at multiple levels expertise.

To start with, we have decomposed the Step Editor service into a set of independent simple services that can be composed on an event-by-event basis to properly identify, interpret, format, record, and route event data. Furthermore, we have developed a composition mechanism, described below, that we think will provide significant advantages in programmability and manageability over other ways of providing such high degrees of flexibility and adaptability.

In prototype development, we have noticed that services fall into three categories: domain or laboratory specific services (type I); device specific services (type II); and domain independent services (type III) that can be applied to a wide variety of applications in laboratories or other environments. Examples some of each category are:

· Construction of graph representation for an individual lab worker by processing abstract typed event data (I).

· Voice recognition against a supplied grammar (III)

· Generic port listeners that import events from any minimally compliant device such as pipetters and barcode and RFID scanners (III)

· Conversion of actual device events into abstract typed events (II)

· Association of people (users) with device events based on proximity, physical contact or other criteria (III)

An interesting outcome of our prototype effort is that the bulk of the services employed in Labscape are of type III, the most generally applicable services. We have a reasonable expectation that most of the type III services can be applied to smart environments that have nothing to do with laboratory or scientific pursuits, such as office or warehouse applications. By composing these services on an even-by-event basis, we can provide maximum flexibility as people and devices move throughout the work-space and new services are added.

The design of the Service Composition Framework can best be understood in comparison to three types of existing systems: reactive systems, client server architectures, and mobile agents. Due to space limitations, we will present our framework along with these comparisons at the workshop. In addition, we will discuss preliminary results from our efforts to reuse the service composition framework and many services in other application domains. And we hope to get feedback on good ways to evaluate the operational paradigm, the user interface, and the service composition framework separately or as a whole.

CSE510 Projects Ideas for Labscape

1. Design and evaluation of feedback and error correction methods in the context of the lab environment. Key questions:

a. What feedback is needed and appropriate given assumptions about the type and frequency of recognition or interpretation errors? How can we evaluate this?

b. What input mechanisms are needed for correction of errors and for initial data input? How can we evaluate this?

c. What assumptions are being made about granularity of location tracking and identification of objects and people in the environment?

2. Given starting assumptions about problem 1, above, how can the HCI aspects of experiment capture be distributed across many shared I/O devices? Key questions are:

a. How to categorize the types of errors that can occur during experiment capture.

b. Are there inter-relationships between these error conditions? If so, how can we deal with them when the recognizers are independent, asynchronous entities? Can we apply disambiguation toolkits [Mankoff] to such cases?

c. What can/should be build to evaluate the proposed architecture?

Assets:

An HCI free distributed software architecture and development environment based on one.world.

A real working lab (with people) in which to test and evaluate ideas

Undergrads to help build infrastructure

Jeff Kim in the iSchool to consult on the ethnography and experiment design.

desc

desc

67uL

is

<guid>

two

tube

hasA

well

is

transfer

<guid>

one

tube

hasA

well

