Reasoning about Programs I

Emina Torlak
emina@cs.washington.edu
Overview

Last lecture

• Finite model finding for first-order logic with quantifiers, relations, and transitive closure

This week

• Reasoning about (partial) correctness of programs
 • Hoare Logic (today)
 • Verification Condition Generation (Friday)
A look ahead (L9–L13)

Classic verification (L9, L10, L11)
 • Checking that all (terminating) executions satisfy an FOL property on all inputs

Bounded verification (L12)
 • Scope-complete checking of FOL properties

Symbolic execution (L13)
 • Systematic checking of FOL properties
A look ahead (L9–L13)

Classic verification (L9, L10, L11)
 • Checking that all (terminating) executions satisfy an FOL property on all inputs

Bounded verification (L12)
 • Scope-complete checking of FOL properties

Symbolic execution (L13)
 • Systematic checking of FOL properties

Active research topic for 45 years
Classic ideas every computer scientist should know
Understanding the ideas can help you become a better programmer
A bit of history

1967: *Assigning Meaning to Programs* (Floyd)
 • 1978 Turing Award

1969: *An Axiomatic Basis for Computer Programming* (Hoare)
 • 1980 Turing Award

1975: *Guarded Commands, Nondeterminacy and Formal Derivation of Programs* (Dijkstra)
 • 1972 Turing Award
A tiny Imperative Programming Language (IMP)

Expression E
- \(Z \mid V \mid E_1 + E_2 \mid E_1 \times E_2 \)

Conditional C
- \(\text{true} \mid \text{false} \mid E_1 = E_2 \mid E_1 \leq E_2 \)

Statement S
- skip (Skip)
- \(V := E \) (Assignment)
- \(S_1; S_2 \) (Composition)
- \(\text{if } C \text{ then } S_1 \text{ else } S_2 \) (If)
- \(\text{while } C \text{ do } S \) (While)

A minimalist programming language for demonstrating key features of Hoare logic.
Specifying correctness in Hoare logic

{P} S {Q}
Specifying correctness in Hoare logic

\{P\} S \{Q\}
Specifying correctness in Hoare logic

Hoare triple

- S is a program statement (in IMP).
- P and Q are FOL formulas over program variables.
- P is called a precondition and Q is a postcondition.
Specifying correctness in Hoare logic

Hoare triple

- S is a program statement (in IMP).
- P and Q are FOL formulas over program variables.
- P is called a **precondition** and Q is a **postcondition**.

Partial correctness (Hoare triple semantics)

- If S executes from a state satisfying P, and if its execution terminates, then the resulting state satisfies Q.
Specify correctness in Hoare logic

Hoare triple

- S is a program statement (in IMP).
- P and Q are FOL formulas over program variables.
- P is called a **precondition** and Q is a **postcondition**.

Partial correctness (Hoare triple semantics)

- If S executes from a state satisfying P, and if its execution terminates, then the resulting state satisfies Q.

Total correctness

- If S executes from a state satisfying P, then its execution terminates and the resulting state satisfies Q.
Specifying correctness in Hoare logic

Hoare triple

- S is a program statement (in IMP).
- P and Q are FOL formulas over program variables.
- P is called a **precondition** and Q is a **postcondition**.

Partial correctness (Hoare triple semantics)

- If S executes from a state satisfying P, and if its execution terminates, then the resulting state satisfies Q.

Total correctness

- If S executes from a state satisfying P, then its execution terminates and the resulting state satisfies Q.
Specifying correctness in Hoare logic

Hoare triple

• S is a program statement (in IMP).
• P and Q are FOL formulas over program variables.
• P is called a **precondition** and Q is a **postcondition**.

Partial correctness (Hoare triple semantics)

• If S executes from a state satisfying P, and if its execution terminates, then the resulting state satisfies Q.

Total correctness

• If S executes from a state satisfying P, then its execution terminates and the resulting state satisfies Q.
Specifying correctness in Hoare logic

Hoare triple

- S is a program statement (in IMP).
- P and Q are FOL formulas over program variables.
- P is called a **precondition** and Q is a **postcondition**.

Partial correctness (Hoare triple semantics)

- If S executes from a state satisfying P, and if its execution terminates, then the resulting state satisfies Q.

Total correctness

- If S executes from a state satisfying P, then its execution terminates and the resulting state satisfies Q.
Examples of Hoare triples
Examples of Hoare triples

{false} S {Q}
Examples of Hoare triples

\{false\} S \{Q\}

- Valid for all S and Q.
Examples of Hoare triples

{false} S {Q}
 • Valid for all S and Q.

{P} while (true) do skip {Q}
Examples of Hoare triples

\{false\} S \{Q\}
 • Valid for all S and Q.

\{P\} while (true) do skip \{Q\}
 • Valid for all P and Q.
Examples of Hoare triples

\{false\} S \{Q\}
 • Valid for all S and Q.

\{P\} while (true) do skip \{Q\}
 • Valid for all P and Q.

\{true\} S \{Q\}
Examples of Hoare triples

\{false\} S \{Q\}
 • Valid for all S and Q.

\{P\} while (true) do skip \{Q\}
 • Valid for all P and Q.

\{true\} S \{Q\}
 • If S terminates, the resulting state satisfies Q.
Examples of Hoare triples

{false} S {Q}
 • Valid for all S and Q.

{P} while (true) do skip {Q}
 • Valid for all P and Q.

{true} S {Q}
 • If S terminates, the resulting state satisfies Q.

{P} S {true}
Examples of Hoare triples

{false} S {Q}
 • Valid for all S and Q.

{P} while (true) do skip {Q}
 • Valid for all P and Q.

{true} S {Q}
 • If S terminates, the resulting state satisfies Q.

{P} S {true}
 • Valid for all P and S.
Proving partial correctness in Hoare logic

Expression E
- \(Z, V, \ E_1 + E_2, \ E_1 \times E_2 \)

Conditional C
- \(\text{true}, \ \text{false}, \ E_1 = E_2, \ E_1 \leq E_2 \)

Statement S
- **skip** (Skip)
- **V := E** (Assignment)
- **S_1; S_2** (Composition)
- **if C then S_1 else S_2** (If)
- **while C do S** (While)

One inference rule for every statement in the language:

\[\vdash \{P_1\} S_1 \{Q_1\} \ldots \vdash \{P_n\} S_n \{Q_n\} \vdash \{P\} S \{Q\} \]

If the Hoare triples \(\{P_1\} S_1 \{Q_1\} \ldots \{P_n\} S_n \{Q_n\} \) are provable, then so is \(\{P\} S \{Q\} \).
Inference rules for Hoare logic

\[\vdash \{P\} \text{skip} \{P\} \]
Inference rules for Hoare logic

\[\vdash \{P\} \text{skip} \{P\}\]

\[\vdash \{Q[E/x]\} x := E \{Q\}\]
Inference rules for Hoare logic

\[\vdash \{P\} \text{skip} \{P\} \]

\[\vdash \{Q[E/x]\} x := E \{Q\} \]

\[\vdash \{P_1\} S \{Q_1\} \quad P \Rightarrow P_1 \quad Q_1 \Rightarrow Q \]

\[\vdash \{P\} S \{Q\} \]
Inference rules for Hoare logic

\[\frac{}{\vdash \{P\} \text{skip} \{P\}} \]

\[\frac{\vdash \{Q[E/x]\} \times := E \{Q\}}{\vdash \{P\} \text{skip} \{P\}} \]

\[\frac{\vdash \{P\} \text{skip} \{P\} \quad \vdash \{Q_1\} \implies P \implies P_1 \quad Q_1 \implies Q}{\vdash \{P\} \text{skip} \{Q\}} \]

\[\frac{\vdash \{P\} S_1 \{R\} \quad \vdash \{R\} S_2 \{Q\}}{\vdash \{P\} S_1; S_2 \{Q\}} \]
Inference rules for Hoare logic

\[
\begin{align*}
\vdash \{P\} \text{skip} \{P\} \\
\vdash \{Q[E/x]\} x := E \{Q\} \\
\vdash \{P_1\} S \{Q_1\} \quad \text{P} \Rightarrow P_1 \quad Q_1 \Rightarrow Q \\
\vdash \{P\} S \{Q\} \\
\vdash \{P\} S_1 \{R\} \quad \vdash \{R\} S_2 \{Q\} \\
\vdash \{P\} S_1; S_2 \{Q\} \\
\vdash \{P \land C\} S_1 \{Q\} \quad \vdash \{P \land \neg C\} S_2 \{Q\} \\
\vdash \{P\} \text{if } C \text{ then } S_1 \text{ else } S_2 \{Q\}
\end{align*}
\]
Inference rules for Hoare logic

\[\vdash \{P\} \text{skip} \{P\} \]

\[\vdash \{Q[E/x]\} x := E \{Q\} \]

\[\vdash \{P_1\} S \{Q_1\} \quad P \Rightarrow P_1 \quad Q_1 \Rightarrow Q \]

\[\vdash \{P\} \text{if } C \text{ then } S_1 \text{ else } S_2 \{Q\} \]

\[\vdash \{P \land C\} S_1 \{Q\} \quad \vdash \{P \land \neg C\} S_2 \{Q\} \]

\[\vdash \{P\} \text{while } C \text{ do } S \{P \land \neg C\} \]

loop invariant
Example: proof outline

\{x \leq n\}
\textbf{while } (x < n) \textbf{ do }
\{x \leq n \land x < n\}
\{x+1 \leq n\} \quad \text{// consequence}
x := x + 1
\{x \leq n\} \quad \text{// assignment}
\{x \leq n \land x \geq n\} \quad \text{// while}
\{x \geq n\} \quad \text{// consequence}
Example: proof outline with auxiliary variables

\{x = X \land y = Y\}
\{y = Y \land x = X\}
t := x
\{y = Y \land t = X\} // assignment
x := y
\{x = Y \land t = X\} // assignment
y := t
\{x = Y \land y = X\} // assignment
Soundness and relative completeness

Proof rules for Hoare logic are sound

If $\vdash \{P\} S \{Q\}$ then $\models \{P\} S \{Q\}$

Proof rules for Hoare logic are relatively complete

If $\models \{P\} S \{Q\}$ then $\vdash \{P\} S \{Q\}$, assuming an oracle for deciding implications
Summary

Today

• Reasoning about partial correctness of programs
 • Hoare Logic

Next lecture

• Verification condition generation (VCG)
• Weakest preconditions (WP)
• Strongest postconditions (SP)