Today

Last lecture
• Symbolic execution and concolic testing

Today
• Introduction to model checking

Reminders
• Homework 3 is due next Wednesday at 11pm
What is model checking?

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

\[M, s \models P \]
What is model checking?

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

A mathematical model of the system, given as a Kripke structure (a finite state machine).

\[M, s \models P \]
What is model checking?

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

M, s ⊨ P

A state of the system (e.g., an initial state).

A mathematical model of the system, given as a Kripke structure (a finite state machine).
What is model checking?

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

A state of the system (e.g., an initial state).

A mathematical model of the system, given as a Kripke structure (a finite state machine).

A temporal logic formula (e.g., a request is eventually acknowledged).

\[M, s \models P \]
Why model checking?

Model checking

Classic & bounded verification
Why model checking?

Model checking

Classic & bounded verification

- Deterministic, single-threaded, possibly infinite-state, terminating programs.
- Fully described by their input/output behavior.
- Semi-automatic or bounded-automatic checking of properties in expressive logics (e.g., FOL).

- Libraries and ADT implementations
- Heap-manipulating programs (e.g., OO)
- Tricky deterministic algorithms
Why model checking?

Model checking

- Reactive systems: concurrent finite-state programs with ongoing input/output behavior.
- Control-intensive but without a lot of data manipulation.
- Fully automatic checking of properties in less expressive (temporal) logics.

- Microprocessors and device drivers
- Embedded controllers (e.g., cars, planes)
- Protocols (e.g., cache coherence)

Classic & bounded verification

- Deterministic, single-threaded, possibly infinite-state, terminating programs.
- Fully described by their input/output behavior.
- Semi-automatic or bounded-automatic checking of properties in expressive logics (e.g., FOL).

- Libraries and ADT implementations
- Heap-manipulating programs (e.g., OO)
- Tricky deterministic algorithms
A brief history of model checking
Modern modal logic (Lewis).
A brief history of model checking

- Modern modal logic (Lewis).
- Standard semantics for modal logics (Kripke).
- Temporal logic (Prior).
A brief history of model checking

1930: Modern modal logic (Lewis).

1960: Standard semantics for modal logics (Kripke).

1977: Using LTL to reason about concurrent programs (Pnueli).

1980: Temporal logic (Prior).

1985: Automata-theoretic approach for LTL model checking (Vardi & Wolper).

A brief history of model checking

1930: Modern modal logic (Lewis).
1977: Using LTL to reason about concurrent programs (Pnueli).
1985: Automata-theoretic approach for LTL model checking (Vardi & Wolper).
1989: SPIN (Holzmann)
1992: SMV (McMillan)
1994: Pentium bug
1995: Futurebus+ verified
A brief history of model checking

1996: Pnueli wins the Turing award “for seminal work introducing temporal logic into computing science and for outstanding contributions to program and system verification.”

2007: Clarke, Emerson and Sifakis jointly win the Turing award “for their role in developing Model-Checking into a highly effective verification technology that is widely adopted in the hardware and software industries.”
Kripke structures
A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$
Kripke structures

A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$

- S is a finite set of states.
Kripke structures

A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
Kripke structures

A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- $R \subseteq S \times S$ is the transition relation, which must be total.
Kripke structures

A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- $R \subseteq S \times S$ is the transition relation, which must be total.
- $L : S \to 2^{AP}$ is a function that labels each state with a set of atomic propositions true in that state.
A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- $R \subseteq S \times S$ is the transition relation, which must be total.
- $L : S \rightarrow 2^{AP}$ is a function that labels each state with a set of atomic propositions true in that state.

A path in M is an infinite sequence of states $\pi = s_0 s_1 \ldots$ such that for all $i \geq 0$, $(s_i, s_{i+1}) \in R$.
In a finite-state program, system variables V range over a finite domain D: $V = \{x, y\}$ and $D = \{0, 1\}$.

A state of the system is a valuation $s : V \rightarrow D$.

```
// x=1, y=1
x := (x + y) % 2
```
Modeling systems with Kripke structures

S ≡ (x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1)
S₀ ≡ (x = 1) ∧ (y = 1)
R(x, y, x′, y′) ≡ (x′ = (x + y) % 2) ∧ (y′ = y)

// x=1, y=1
x := (x + y) % 2

• In a finite-state program, system variables V range over a finite domain D: V = {x, y} and D = {0, 1}.
• A state of the system is a valuation s : V → D.
• Use FOL to describe the (initial) states and the transition relation.
Modeling systems with Kripke structures

// x=1, y=1
x := (x + y) % 2

S ≡ (x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1)
S_0 ≡ (x = 1) ∧ (y = 1)
R(x, y, x', y') ≡ (x' = (x + y) % 2) ∧ (y' = y)

• In a finite-state program, system variables V range over a finite domain D: V = \{x, y\} and D = \{0, 1\}.
• A state of the system is a valuation s : V → D.
• Use FOL to describe the (initial) states and the transition relation.
• Extract a Kripke structure from the FOL description.
Modeling systems with Kripke structures

```
// x=1, y=1
x := (x + y) % 2

S ≡ (x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1)
S₀ ≡ (x = 1) ∧ (y = 1)
R(x, y, x', y') ≡ (x' = (x + y) % 2) ∧ (y' = y)
```

- In a finite-state program, system variables \(V \) range over a finite domain \(D: V = \{x, y\} \) and \(D = \{0, 1\} \).
- A state of the system is a valuation \(s: V \rightarrow D \).
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.
Modeling systems with Kripke structures

\[S \equiv (x = 0 \lor x = 1) \land (y = 0 \lor y = 1) \]
\[S_0 \equiv (x = 1) \land (y = 1) \]
\[R(x, y, x', y') = (x' = (x + y) \mod 2) \land (y' = y) \]

- In a finite-state program, system variables \(V \) range over a finite domain \(D: V = \{x, y\} \) and \(D = \{0, 1\} \).
- A state of the system is a valuation \(s : V \rightarrow D \).
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

// x=1, y=1
x := (x + y) % 2
Modeling systems with Kripke structures

// x=1, y=1
x := (x + y) % 2

\[S \equiv (x = 0 \lor x = 1) \land (y = 0 \lor y = 1) \]
\[S_0 \equiv (x = 1) \land (y = 1) \]
\[R(x, y, x', y') \equiv (x' = (x + y) \% 2) \land (y' = y) \]

- In a finite-state program, system variables V range over a finite domain D: V = \{x, y\} and D = \{0, 1\}.
- A state of the system is a valuation \(s : V \to D \).
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.
Modeling systems with Kripke structures

\[
S \equiv (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)
\]

\[
S_0 \equiv (x = 1) \land (y = 1)
\]

\[
R(x, y, x', y') \equiv (x' = (x + y) \mod 2) \land (y' = y)
\]

- In a finite-state program, system variables \(V \) range over a finite domain \(D \): \(V = \{x, y\} \) and \(D = \{0, 1\} \).
- A state of the system is a valuation \(s : V \rightarrow D \).
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

State explosion: Kripke structure usually exponential in the size of the program.
A Kripke structure for a concurrent program

Two processes executing concurrently and asynchronously, using the shared variable turn to ensure *mutual exclusion*:

They are never in the critical section at the same time.

```c
P1
10 while (true) {
11   wait(turn == 0);
   // critical section
12   turn := 1;
13 }

P2
20 while (true) {
21   wait(turn == 1);
   // critical section
22   turn := 0;
23 }
```
A Kripke structure for a concurrent program

Two processes executing concurrently and asynchronously, using the shared variable turn to ensure \textit{mutual exclusion}:

They are never in the critical section at the same time.

State of the program described by the variable turn and the \textit{program counters} for the two processes.

\begin{verbatim}
P_1
10 while (true) {
11 wait(turn == 0);
12 // critical section
13 turn := 1;
14 }

P_2
20 while (true) {
21 wait(turn == 1);
22 // critical section
23 turn := 0;
24 }
\end{verbatim}
A Kripke structure for a concurrent program

\[P_1 \]
10 while (true) {
11 wait(turn == 0);
12 // critical section
13 turn := 1;
14 }

\[P_2 \]
20 while (true) {
21 wait(turn == 1);
22 // critical section
23 turn := 0;
24 }
A Kripke structure for a concurrent program

\[\text{P}_1 \]
10 \hspace{1em} \text{while} \ (\text{true}) \{ \\
11 \hspace{1em} \text{wait}(\text{turn} == 0); \\
12 \hspace{5em} \text{// critical section} \\
13 \hspace{1em} \text{turn} := 1; \\
14 \} \\

\[\text{P}_2 \]
20 \hspace{1em} \text{while} \ (\text{true}) \{ \\
21 \hspace{1em} \text{wait}(\text{turn} == 1); \\
22 \hspace{5em} \text{// critical section} \\
23 \hspace{1em} \text{turn} := 0; \\
24 \} \\

turn=0, 10, 20

turn=1, 10, 20
A Kripke structure for a concurrent program

P₁
10 while (true) {
11 wait(turn == 0);
12 // critical section
13 turn := 1;
14 }

P₂
20 while (true) {
21 wait(turn == 1);
22 // critical section
23 turn := 0;
24 }
A Kripke structure for a concurrent program

\[P_1 \]

10 while (true) {
11 wait(turn == 0);
 // critical section
12 turn := 1;
13 }

\[P_2 \]

20 while (true) {
21 wait(turn == 1);
 // critical section
22 turn := 0;
23 }
A Kripke structure for a concurrent program

\[P_1 \]

\[
\begin{align*}
10 & \text{ while (true) } \{ \\
11 & \text{ wait(turn == 0);} \\
12 & \quad \text{ // critical section} \\
13 & \text{ turn := 1;}
\}
\]

\[P_2 \]

\[
\begin{align*}
20 & \text{ while (true) } \{ \\
21 & \text{ wait(turn == 1);} \\
22 & \quad \text{ // critical section} \\
23 & \text{ turn := 0;}
\}
\]
A Kripke structure for a concurrent program

\[P_1 \]
\[
10 \text{ while (true) } \{
11 \quad \text{wait} (\text{turn} == 0);
\quad \text{// critical section}
12 \quad \text{turn} := 1;
13 \}
\]

\[P_2 \]
\[
20 \text{ while (true) } \{
21 \quad \text{wait} (\text{turn} == 1);
\quad \text{// critical section}
22 \quad \text{turn} := 0;
23 \}
\]
Safety & liveness properties of reactive systems

Safety

• “Nothing bad will happen.”
• φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

• “Something good will happen.”
• ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.
Safety & liveness properties of reactive systems

Safety

- “Nothing bad will happen.”
- ϕ is a safety property iff every infinite path π violating ϕ has a finite prefix π' such that every extension of π' violates ϕ.

Liveness

- “Something good will happen.”
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Finite witnesses (counterexamples).
Reducible to checking reachability in the state transition graph.
Safety & liveness properties of reactive systems

Safety
• “Nothing bad will happen.”
• ϕ is a safety property iff every infinite path π violating ϕ has a finite prefix π' such that every extension of π' violates ϕ.

Finite witnesses (counterexamples).
Reducible to checking reachability in the state transition graph.

Liveness
• “Something good will happen.”
• ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

No finite witnesses (counterexamples).
Safety & liveness properties of reactive systems

Safety

• “Nothing bad will happen.”
• φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Mutual exclusion: P_1 and P_2 will never be in their critical regions simultaneously.

Liveness

• “Something good will happen.”
• ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.
Safety & liveness properties of reactive systems

Safety

• “Nothing bad will happen.”

• φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

• “Something good will happen.”

• ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Mutual exclusion: P_1 and P_2 will never be in their critical regions simultaneously.

Starvation freedom: whenever P_1 is ready to enter its critical section, it will eventually succeed (provided that the scheduler is fair and does not let P_2 stay in its critical section forever).
Expressing properties in temporal logics

Linear time: properties of computation paths

Branching time: properties of computation trees
Computation tree logic CTL*

Path quantifiers describe the branching structure of the computation tree:

- **A** (for all paths)
- **E** (there exists a path)

Temporal operators describe properties of a path through a tree:

- **Xp** (p holds “next time”)
- **Fp** (p holds “eventually” or “in the future”)
- **Gp** (p holds “always” or “globally”)
- **p U q** (p holds “until” q holds)
Syntax of CTL*

State formulas

- Atomic propositions: \(a \in AP \)
- \(\neg f, f \land g, f \lor g \), where \(f \) and \(g \) are state formulas
- \(Ap \) and \(Ep \), where \(p \) is a path formula

Path formulas

- \(f \), where \(f \) is a state formula
- \(\neg p, p \land p, p \lor q \), where \(p \) and \(q \) are path formulas
- \(Xp, Fp, Gp, p U q \), where \(p \) and \(q \) are path formulas
Semantics of CTL*

State formulas

- \(M, s \models f \) iff \(f \in L(s) \)
- \(M, s \models Ap \) iff \(M, \pi \models p \) for all paths \(\pi \) that start at \(s \)
- \(M, s \models Ep \) iff \(M, \pi \models p \) for some path \(\pi \) that starts at \(s \)

Path formulas (\(\pi^k \) is suffix of \(\pi \) starting at \(s_k \))

- \(M, \pi \models f \) iff \(M, s \models f \) and \(s \) is the first state of \(\pi \)
- \(M, \pi \models Xp \) iff \(M, \pi^1 \models p \)
- \(M, \pi \models Fp \) iff \(M, \pi^k \models p \) for some \(k \geq 0 \)
- \(M, \pi \models Gp \) iff \(M, \pi^k \models p \) for all \(k \geq 0 \)
- \(M, \pi \models p \bigcup q \) iff \(M, \pi^k \models q \) and \(M, \pi^j \models p \) for some \(k \geq 0 \) and for all \(0 \leq j < k \)
CTL and Linear Temporal Logic (LTL)

Computation Tree Logic (CTL)

• Fragment of CTL* in which each temporal operator is prefixed with a path quantifier.

 \(\text{AG} (\text{EF} p) \): From any state, it is possible to get to a state where \(p \) holds.

Linear Temporal Logic (LTL)

• Fragment of CTL* with formulas of the form \(\text{A} p \), where \(p \) contains no path quantifiers.

 \(\text{A} (\text{FG} p) \): Along every path, there is some state from which \(p \) will hold forever.
Computation Tree Logic (CTL)

- Fragment of CTL* in which each temporal operator is prefixed with a path quantifier.
- $\text{AG}(\text{EF } p)$: From any state, it is possible to get to a state where p holds.

Linear Temporal Logic (LTL)

- Fragment of CTL* with formulas of the form $A p$, where p contains no path quantifiers.
- $A(\text{FG } p)$: Along every path, there is some state from which p will hold forever.
CTL and Linear Temporal Logic (LTL)

Computation Tree Logic (CTL)
- Fragment of CTL* in which each temporal operator is prefixed with a path quantifier.
- $AG(EF \, p)$: From any state, it is possible to get to a state where p holds.

Linear Temporal Logic (LTL)
- Fragment of CTL* with formulas of the form Ap, where p contains no path quantifiers.
- $A(FG \, p)$: Along every path, there is some state from which p will hold forever.
Expressive power of CTL, LTL, and CTL*
Cannot be expressed in CTL

Can be expressed in LTL

Fairness

• Handled by changing the semantics to use fair Kripke structures.

A fair Kripke structure $M = \langle S, S_0, R, L, F \rangle$ includes an additional set of sets of states $F \subseteq 2^S$.

• For each $P \in F$, a fair path π includes some states from P infinitely often.

• Path quantifiers interpreted only with respect to fair paths.

Fairness

Can be expressed in LTL

• Absolute fairness: $A(GF p_{exec})$

• Strong fairness: $A((GF p_{ready}) \land (GF p_{ready} \land p_{exec}))$

• Weak fairness: $A((FG p_{ready}) \land (GF p_{ready} \land p_{exec})))$
Fairness

Cannot be expressed in CTL
- Handled by changing the semantics to use fair Kripke structures.
- A *fair* Kripke structure $M = \langle S, S_0, R, L, F \rangle$ includes an additional set of sets of states $F \subseteq 2^S$.
- For each $P \in F$, a *fair path* π includes some states from P infinitely often.
- Path quantifiers interpreted only with respect to fair paths.

Can be expressed in LTL

- Absolute fairness: $A(GF p \text{exec})$
- Strong fairness: $A(GF p \text{ready} \rightarrow GF p \text{ready} \land p \text{exec})$
- Weak fairness: $A(FG p \text{ready} \rightarrow GF p \text{ready} \land p \text{exec})$
Fairness

Cannot be expressed in CTL

- Handled by changing the semantics to use fair Kripke structures.
- A fair Kripke structure $M = \langle S, S_0, R, L, F \rangle$ includes an additional set of sets of states $F \subseteq 2^S$.
- For each $P \in F$, a fair path π includes some states from P infinitely often.
- Path quantifiers interpreted only with respect to fair paths.

Can be expressed in LTL

- Absolute fairness: $A(GF \ p_{exec})$
- Strong fairness:
 $A((GF \ p_{ready}) \Rightarrow (GF \ p_{ready} \land p_{exec}))$
- Weak fairness:
 $A((FG \ p_{ready}) \Rightarrow (GF \ p_{ready} \land p_{exec}))$
Model checking complexity for CTL, LTL, CTL*

Polynomial Time for CTL
- Best known algorithm: $O(|M| \times |f|)$

PSPACE-complete for LTL
- Best known algorithm: $O(|M| \times 2^{|f|})$

PSPACE-complete for CTL*
- Best known algorithm: $O(|M| \times 2^{|f|})$
Model checking techniques for CTL and LTL

CTL

- Graph-theoretic explicit-state model checking (EMC)
- Symbolic model checking with Ordered Binary Decision Diagrams (SMV, NuSMV)
- Bounded model checking based on SAT (NuSMV)

LTL

- Automata-theoretic model checking:
 - Explicit-state (SPIN) or
 - Symbolic (NuSMV)
Summary

Today

• Basics of model checking:
 • Kripke structures
 • Temporal logics (CTL, LTL, CTL*)
 • Model checking techniques

Next lecture

• Software model checking