
CSE 507: Computer-Aided Reasoning for Software Fall 2014

Homework Assignment 3
Due: November 18, 2014 at 11:00pm

Total points: 100
Deliverables: hw3.pdf containing typeset solutions to Problems 1-4 and 9.

tree.als containing your Alloy encoding for Problems 5-8.
sort.dfy containing your Dafny implementation for Problem 10.

1 Combining Theories with Nelson-Oppen (25 points)

1. (5 points) Recall that the theory of arrays TA = {read,write,=} is defined by the following axioms.

∀a, i, j. i = j → read(a, i) = read(a, j)
∀a, v, i, j. i = j → read(write(a, i, v), j) = v
∀a, v, i, j. i 6= j → read(write(a, i, v), j) = read(a, j)

Prove that TA is not convex by constructing n ≥ 3 formulas in TA such that F1 ⇒ (F2 ∨ . . . ∨ Fn) but
F1 6⇒ Fi for any i ∈ [2 . . . n].

2. (5 points) Purify the following T= ∪ TR formula and show the resulting T= and TR formulas.

g(x+ y, z) = f(g(x, y)) ∧ x+ z = y ∧ z ≥ 0 ∧ x ≥ y ∧ g(x, x) = z ∧ f(z) 6= g(2x, 0)

T= TR

.

Apply purification to the (current) innermost term first. If there are several innermost terms, prefer
the leftmost one. Use ai to refer to the ith auxiliary literal, starting with a1. All occurrences of the
same term should be mapped to the same auxiliary literal. You do not need to show the individual
steps of the purification process, just the final result.

3. (5 points) Use the Nelson-Oppen procedure to decide the satisfiability of the purified formula from
Problem 2. In one sentence, state which version of the procedure you are using (general or specialized)
and justify your choice. Show the equality propagation by filling out the table below. If Ti infers the
jth equality (or disjunction of equalities), enter it into the jth row and ith column only—leave the
remaining column in that row empty.

T= TR

.

4. (10 points) Let F be a conjunctive formula in a non-convex theory T . Let G be a finite disjunction of
equalities

∨n
i=1 ui = vi, also in T , such that F ⇒ G. Describe an algorithm for computing a minimal

disjunction G′ of the equalities in G such that F ⇒ G′. If your algorithm returns a minimal disjunction
with m equalities, then it should have invoked the decision procedure for T at most O(m log n) times.

1 of 3

CSE 507: Computer-Aided Reasoning for Software
Fall 2014

Homework Assignment 3
Due: November 18, 2014 at 11:00pm

2 Finite Model Finding with Alloy (25 points)

In this part of the assignment, you will write four short Alloy specifications and check their correctness with
the help of Alloy’s finite model finder (Lecture 9). To start, download alloy.jar and double click on it to
launch the tool. You may also want to skim Parts 1 and 2 of the Alloy tutorial.

The following questions ask you to formally define different kinds of trees. We will only consider trees that
have directed edges and no unconnected nodes. Such a tree is fully described by its set of edges. In Alloy,
we model the edges of a tree (or, more generally, a graph) as a binary relation from nodes to nodes.

A skeleton solution can be found in tree.als. Complete the missing definitions and submit your copy of
tree.als. Solutions will be automatically checked against a reference specification, so they need to be fully
contained in the submitted file.

5. (5 points) A tree is a graph that satisfies additional properties. What are those properties? Formalize
them by completing the definition of the tree predicate in tree.als. Use the Alloy tool to check that
your definition is correct (i.e., it rejects relations that are not trees) and non-vacuous (i.e., it admits
some relations) in a universe with a small number of nodes.

6. (5 points) Formalize the properties of a spanning tree (of a directed graph) by completing the definition
of the spanningTree predicate in tree.als. Check your definition for correctness and vacuity errors.

7. (5 points) Define binary trees in terms of their left and right relations, which map tree nodes to their
left and right children (if any), respectively. Use your definition to complete the binaryTree predicate
in tree.als. Check your definition for correctness and vacuity errors.

8. (10 points) Define binary search trees in terms of their left, right, and key relations. As above, the left
and right relations map tree nodes to their left and right children (if any). The key relation maps tree
nodes to integer keys. Use your definition to complete the binarySearchTree predicate in tree.als.
Check your definition for correctness and vacuity errors.

3 Reasoning about Programs with Hoare Logic (25 points)

9. (25 points) Prove the validity of the following Hoare triple:

{n ≥ 0 ∧ d > 0}
q := 0;
r := n;
while (r ≥ d) {
q := q + 1;
r := r - d;

}
{n = q ∗ d + r ∧ 0 ≤ r < d}

Your answer should take the form of a proof outline, which annotates the program S with FOL predi-
cates inferred by applying the rules of Hoare logic. For example, if a proof outline includes n consecutive
predicates F1, . . . , Fn, then it must be that case that F1 ⇒ . . . ⇒ Fn, corresponding to the Rule of
Consequnce. Similarly, each statement s ∈ S must be surrounded by formulas P and Q such that
{P}S{Q} is a valid Hoare triple, according to the inference rule for S.

4 Verifying Programs with Dafny (25 points)

In this part of the assignment, you will use Dafny (Lecture 11) to verify a modified implementation of the
insertion sort. You can either download and install Dafny or use the web interface at rise4fun. To get started,

2 of 3

http://alloy.mit.edu/alloy/
http://courses.cs.washington.edu/courses/cse507/14au/slides/L9.pdf
http://alloy.mit.edu/alloy/downloads/alloy4.2_2014-05-16.jar
http://alloy.mit.edu/alloy/tutorials/day-course/s1_logic.pdf
http://alloy.mit.edu/alloy/tutorials/day-course/s2_language.pdf
http://alloy.mit.edu/alloy/tutorials/day-course/
https://github.com/emina/cse507fa14/blob/master/specs-and-proofs/tree.als
https://github.com/emina/cse507fa14/blob/master/specs-and-proofs/tree.als
https://github.com/emina/cse507fa14/blob/master/specs-and-proofs/tree.als
https://github.com/emina/cse507fa14/blob/master/specs-and-proofs/tree.als
https://github.com/emina/cse507fa14/blob/master/specs-and-proofs/tree.als
https://github.com/emina/cse507fa14/blob/master/specs-and-proofs/tree.als
http://research.microsoft.com/en-us/projects/dafny/
http://courses.cs.washington.edu/courses/cse507/14au/slides/L11.pdf
http://rise4fun.com/dafny/

CSE 507: Computer-Aided Reasoning for Software
Fall 2014

Homework Assignment 3
Due: November 18, 2014 at 11:00pm

read the Dafny Guide, which describes all features of Dafny that are needed to complete the assignment.

10. (25 points) sort.dfy contains an implementation of the insertion sort and a partial correctness predicate:
applying the sortmethod to an array a ensures that a[i] ≤ a[j] for all valid indices i < j. This predicate
is not quite right as written, however, and the implementation is missing all annotations except for the
desired post-condition on sort.

Get Dafny to verify sort.dfy by annotating it with sufficient pre/post conditions, assertions, loop in-
variants, and frame conditions. When the verification succeeds, Dafny will print the following message:
“Dafny program verifier finished with n verified, 0 errors” (where n is a small number). Submit your
annotated copy of sort.dfy.

3 of 3

http://rise4fun.com/Dafny/tutorial/guide
https://github.com/emina/cse507fa14/blob/master/specs-and-proofs/sort.dfy
https://github.com/emina/cse507fa14/blob/master/specs-and-proofs/sort.dfy
https://github.com/emina/cse507fa14/blob/master/specs-and-proofs/sort.dfy

	Combining Theories with Nelson-Oppen (25 points)
	Finite Model Finding with Alloy (25 points)
	Reasoning about Programs with Hoare Logic (25 points)
	Verifying Programs with Dafny (25 points)

