
CSE 507: Computer-Aided Reasoning for Software Fall 2014

Homework Assignment 2
Due: November 04, 2014 at 11:00pm

Total points: 100
Deliverables: hw2.pdf containing typeset solutions to Problems 1-7.

hw2.smt containing your SMT-LIB encoding for Problem 4d.
verifier.rkt containing your implementation for Problem 6.

1 Variations on SAT (20 points)

Consider the following variations on the propositional satisfiability (SAT) problem:

Partial Weighted MaxSAT Given a set H of hard CNF clauses and a set S of soft CNF clauses with
weights w : S → Z, the Partial Weighted MaxSAT problem is to find an assignment A to the problem
variables that satisfies all the hard clauses and that maximizes the weight of the satisfied soft clauses.
That is, A |=

∧
c∈H c, and if we let C = {c ∈ S|A |= c}, then there is no C ′ ⊆ S such that H ∪ C ′ is

satisfiable and
∑

c′∈C′ w(c′) >
∑

c∈C w(c).

Pseudo-Boolean Optimization Let B be a set of pseudo-boolean constraints of the form
∑

aijxj ≥ bi,
where xj is a variable over {0, 1} and aij , bi, cj are integer constants. The Pseudo-Boolean Optimization
problem is to satisfy all constraints in B while minimizing a linear function

∑
cj · xj .

1. (10 points) Explain how to encode a Partial Weighted MaxSAT problem P as a Pseudo-Boolean
Optimization problem P ′ such that (1) P ′ is satisfiable iff P is satisfiable, and (2) a solution to P can
be extracted from a solution to P ′. Show the result of your encoding (the optimization function and
the pseudo-boolean constraints) on the following example, which uses the pair notation to associate
weights with soft clauses:

H = {(x1 ∨ x2 ∨ ¬x3), (¬x2 ∨ x3), (¬x1 ∨ x3)}
S = {〈(¬x3), 6〉, 〈(x1 ∨ x2), 3〉, 〈(x1 ∨ x3), 2〉}

2. (10 points) Explain how to encode a Pseudo-Boolean Optimization P as a Partial Weighted MaxSAT
problem P ′ such that (1) P ′ is satisfiable iff P is satisfiable, and (2) a solution to P can be extracted
from a solution to P ′. Assume the existence of a function toCNF that takes as input a pseudo-boolean
constraint

∑
aijxj ≥ bi and encodes it as a boolean circuit in CNF form. Show the result of your

encoding (the set of hard clauses, and the set of soft clauses with their weights) on the following
example:

minimize 4x1 + 2x2 + x3

subject to 2x1 + 3x2 + 5x3 ≥ 5
−x1 − x2 ≥ −1
x1 + x2 + x3 ≥ 2

2 Theory of Equality and Uninterpreted Functions (30 points)

3. (10 points) Apply the congruence closure algorithm to decide the satisfiability of the following T=

formula:
f(g(x)) = g(f(x)) ∧ f(g(f(y))) = x ∧ f(y) = x ∧ g(f(x)) 6= x

1 of 3



CSE 507: Computer-Aided Reasoning for Software
Fall 2014

Homework Assignment 2
Due: November 04, 2014 at 11:00pm

Provide the level of detail as in Lecture 6. In particular, show all intermediate partitions (sets of
congruence classes) as they are being computed by the algorithm, together with a brief explanation of
how the algorithm arrived at that partition (e.g., “according to the literal l, merge ci with cj”).

4. (20 points) Consider the following program fragments, where all variables are 32-bit integers:
P1:

z1 = (x1 + y1) * (x2 + y2)

P2:

u1 = (x1 + y1)
u2 = (x2 + y2)
z2 = (u1 * u2)

(a) (5 points) Use Bounded Model Checking (BMC) to construct a formula in the theory of equality
(T=) that is unsatisfiable iff P1 and P2 are equivalent ignoring the semantics of 32-bit addition
and multiplication.

(b) (5 points) Construct a program P3 such that P3 is equivalent to P1, but the equivalence of P1

and P3 cannot be proven without considering some aspect of the semantics of 32-bit addition or
multiplication. That is, the BMC formula for checking the equivalence of P1 and P3 should be
satisfiable in T= but unsatisfiable in the theory of bitvectors (Tbv).

(c) (5 points) Provide a partial interpretation of the relevant 32-bit integer operations that is sufficient
for the proof in Problem 4b to succeed in T=. The partial interpretation should take the form
of axioms—additional (universally quantified) formulas that constrain the uninterpreted function
representing an operation to capture relevant properties of that operation.

(d) (5 points) Use BMC to construct a T= formula that is unsatisfiable iff P1 is equivalent to P3 from
Problem 4b under the partial interpretation from Problem 4c. Express this encoding in SMT-LIB
syntax, run Z3 on it with the -st option, and show the resulting output. See the Z3 tutorial for
examples of formulas in SMT-LIB syntax. Submit your SMT-LIB encoding in a separate hw2.smt
file.

3 A Verifier for Superoptimization (50 points)

Superoptimization is the task of replacing a given loop-free sequence of instructions with an equivalent se-
quence that is better according to some metric (e.g., shorter). Modern superoptimizers work by employing
various forms of the guess-and-check strategy: given a sequence s of instructions, they guess a better re-
placement sequence r, and then they check that s and r are equivalent. In this problem, you will develop
a simple SMT-based verifier for superoptimization. Given two loop-free sequences of 32-bit integer instruc-
tions, your verifier will either confirm that they are equivalent or, if they are not, it will produce a concrete
counterexample—an input on which the two sequences produce different outputs.

The verifier will accept programs in the BV language, which has the following grammar:
Prog := (define-fragment (id id∗) Stmt∗ Ret)
Stmt := (define id Expr) | (set! id Expr)
Ret := (return Expr)
Expr := id | const | (if Expr Expr Expr) | (unary-op Expr) |

(binary-op Expr Expr) | (nary-op Expr+)
unary-op := bvneg | bvnot
binary-op := = | bvule | bvult | bvuge | bvugt | bvsle | bvslt | bvsge | bvsgt |

bvdiv | bvsrem | bvshl | bvlshr | bvashr | bvsub
nary-op := bvor | bvand | bvxor | bvadd | bvmul
id := identifier
const := 32-bit integer | true | false
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The following well-formedness rules for programs are assumed: an identifier is not used before it is defined;
an identifier is not defined more than once; the first sub-expression of an if-expression is of type boolean,
and its remaining subexpressions have the same type. The statement (set! id Expr) assigns the value of
Expr to the variable id; the types of id and Expr must match. The inputs to a fragment are 32-bit integers.

The operators in the BV language have the same semantics as the corresponding operators in Tbv (see the Z3
tutorial on bitvectors). For example, the following BV programs correspond to P1 and P2 from Problem 4:

(define-fragment (P1 x1 y1 x2 y2)
(return (bvmul (bvadd x1 y1) (bvadd x2 y2))))

(define-fragment (P2 x1 y1 x2 y2)
(define u1 (bvadd x1 y1))
(define u2 (bvadd x2 y2))
(return (bvmul u1 u2)))

5. (10 points) The grammar for the BV language is designed in such a way that you do not need to convert
a BV program to Static Single Assignment (SSA) form before translating it to bit vector logic. Explain
in a few sentences what property of this grammar allows you to avoid SSA conversion.

6. (30 points) Implement a BMC verifier for the BV language in Racket, using the provided solution
skeleton. See the README file for instructions on using the skeleton with Z3.
Your verifier (see verifier.rkt) should take as input two BV program fragments (examples.rkt
and bv.rkt); produce a QF_BV formula that is unsatisfiable iff the programs are equivalent; invoke
Z3 on the generated formula (solver.rkt); and decode Z3’s output as follows. If the programs are
equivalent, the verifier should return ’EQUIVALENT; otherwise it should return an input, expressed as
a list of integers, on which the fragments produce a different output.
Inputs to the two programs should be the only unknowns (i.e., bitvector constants) in the QF_BV formula
produced by your verifier. This means that the verifier cannot use additional constants to represent
the values of program expressions and statements. But it should also not inline the translations of
individual expressions. For example, consider the following BV fragment:

(define-fragment (toy b c)
(define a (bvmul b c))
(return (bvadd a a)))

The encoding may introduce two unknowns to represent the input variables b and c. But it may not
translate the first statement by emitting an SMT-LIB equality constraint such as (= a (bvmul b c)),
where a is a fresh unknown. Similarly, it may not translate the return statement by inlining the
encoding of the first statement, i.e., (bvadd (bvmul b c) (bvmul b c)).

(Hint: Your encoding may use SMT-LIB definitions, introduced by define-fun.)

Your entire encoding should fit into the verifier.rkt file. In particular, the verify-all procedure
in tests.rkt (see Problem 7) should be executable just by placing your verifier.rkt into the src
directory, without modifying any supporting files. Your encoding will be tested and graded automati-
cally, so it is important for the implementation to be self-contained, and to adhere to the input/output
specification given above.

7. (10 points) Run your verifier on the benchmarks in tests.rkt and record the outcomes in table format:

Benchmark Outcome Time (ms)
...

...
...

Ti EQUIVALENT or counterexample k
...

...
...
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