
Answer Key – Computer Science & Engineering 505 Midterm
November 1, 1999

Open book & notes – 50 minutes – 10 points per question
50 points total

1. Consider the following program in an Algol-like language.

begin
integer g;
procedure clam(j,k: integer);

begin
print(j,k);
g := g+1;
print(j,k);
end;

g := 1;
clam(2*g, g);
end;

What is the output if j and k are both passed by:

(a) call by value
2 1
2 1

(b) call by name
2 1
4 2

(c) call by reference
2 1
2 2

(Assume that having an expression as the actual parameter when passing by reference is legal. The
compiler generates a temporary for the result of evaluating the expression, which is then passed by
reference.)

1



2. Suppose that you write a random number generator in Algol-60, and use an own variable in the
procedure random to hold the seed. Suppose also you want to be able to initialize the seed to a given
value, so that the random number generator will generate the same values for each run of the program
for testing purposes. How would you initialize the seed? Discuss the concept of own variables in light
of your answer. If they worked well for this usage, say so; if they didn’t work well, discuss alternatives.

An own variable seems like it ought to be a good mechanism to hold the seed for the random number
generator, since it will retain its value between invocations of the random number generator and is not
visible outside the scope of the random procedure.

Unfortunately, initializing the seed is not convenient. The seed can only be accessed from within the
random procedure (or a procedure nested inside of random). There isn’t a way to specify an initial
value as part of the declaration. So the programmer would need to have a global boolean initialized
flag, which is initially set to false. Within random, test initialized. If it is false, initialize the seed,
and set initialized to true. However, using a global variable for initialized defeats the purpose
of hiding the seed — we might as well just make the seed be a global.

Note that we can’t make the initialized flag be local to the random procedure, since otherwise we
still have the same problem of initializing initialized — it must be global.

This indicates that the concept of own variables has severe limitations, due to these initialization
problems. A simple solution is to allow initial values to be specified in declarations. A comprehensive
solution, available in object-oriented languages, is to define a random number generation object, whose
constructor or initialization method sets the seed.

3. Consider the following linear programming problem.

minimize x
subject to
4 ≤ x
x ≤ 10
As usual, x is constrained to be non-negative.

We first eliminate the inequality constraints by adding slack variables s1 and s2:

4 + s1 = x
x + s2 = 10

After the first phase of the simplex algorithm, we might obtain the following basic feasible solution:

s1 = 6− s2

x = 10− s2

(a) What is the solution given by this tableau? x = 10, s1 = 6, s2 = 0
(b) What is the value of the objective function? 10
(c) Starting from this tableau, show how you obtain an optimal solution.

The objective function is 10−s2. So we can decrease the value of the objective function by making
s2 positive. The value of s2 is limited by both equations in the tableau, and s1 = 6 − s2 is more
limiting. Solve this for s2 and substitute in the other equation and objective function to get
s2 = 6− s1

x = 4 + s1

The objective function is 4+s1. Since the coefficient of s1 is positive, increasing its value will just
make the value of the objective function larger, so we’re done. The solution is x = 4, s2 = 6, s1 = 0.

4. Our implementation of CLP(R) uses an incomplete solver. Call this one “Standard CLP(R)”. Suppose
that we had another implementation, called “Complete CLP(R)”, that has a complete solver. Both
Standard and Complete CLP(R) try rules in the same order, and select the leftmost literal in a
derivation.

2



(a) Are there goals for which Standard CLP(R) returns an answer, and for which Complete CLP(R)
says no? Why? Give an example if one exists.
Yes - if Standard CLP(R)’s solver answers unknown, but the constraints are in fact unsatisfiable,
then Standard CLP(R) will say maybe and Complete CLP(R) will say no. An example of this
occurs for the goal
X*X*X=10, X<0.

(b) Are there goals for which Complete CLP(R) returns an answer, and for which Standard CLP(R)
says no? Why? Give an example if one exists.
No. If Complete CLP(R) returns an answer, since its solver is complete, the constraints can in fact
be satisfied for some derivation. So Standard CLP(R)’s solver will answer either satisfiable or
unknown for this same derivation — and so it will say yes or maybe.

(c) Suppose both Standard CLP(R) and Complete CLP(R) return an answer to a given goal (i.e.
the final constraint store simplified with respect to the variables in the initial goal). Are these
answers always equivalent with respect to the variables in the initial goal? Or are there cases in
which they are not equivalent but one implies the other? Are there cases in which neither implies
the other? Give examples.
See p 58 of the text for a definition of “equivalent with respect to the variables in the initial goal”.
The answers are always equivalent with respect to the variables in the initial goal — if they were
not, one of the solvers would be unsound. For example, for the query
X*X=4.

Standard CLP(R) will respond

4 = X * X

*** Maybe

while Complete CLP(R) will respond

X = 2

*** Yes

These answers are equivalent with respect to X.

3



5. Consider the following CLP(R) rules.

smallprime(2).
smallprime(3).
smallprime(5).

Show the derivation tree for the following goal.

smallprime(N), N>2.

I don’t want to try and convince latex to lay out a tree, so here’s a description. The root of the tree
is the goal

〈smallprime(N), N > 2 | true〉

From the root node there are three branches, R1, R2, and R3, where R1, R2, and R3 are the three
“smallprime” rules.

Here is the R1 branch:

〈N = 2, N > 2 | true〉
|

〈N > 2 | N = 2〉
|

〈 | N = 2, N > 2〉

Here is the R2 branch:

〈N = 3, N > 2 | true〉
|

〈N > 2 | N = 3〉
|

〈 | N = 3, N > 2〉

4



Here is the R3 branch:

〈N = 5, N > 2 | true〉
|

〈N > 2 | N = 5〉
|

〈 | N = 5, N > 2〉

5


