Graduate Programming Languages:
Type Safety for STLC with Constants

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

\[
e ::= c \mid \lambda x. e \mid x \mid e e
\]

\[
v ::= c \mid \lambda x. e
\]

\[
\tau ::= \text{int} \mid \tau \rightarrow \tau
\]

\[
\Gamma ::= \cdot \mid \Gamma, x: \tau
\]

Evaluation Rules (a.k.a. Dynamic Semantics)

\[e \rightarrow e']\]

\[
\text{E-Apply} \quad \frac{(\lambda x. e) v \rightarrow e[v/x]}{e \rightarrow e'}
\]

\[
\text{E-App1} \quad \frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2}
\]

\[
\text{E-App2} \quad \frac{e_2 \rightarrow e'_2}{v e_2 \rightarrow v e'_2}
\]

Typing Rules (a.k.a. Static Semantics)

\[\Gamma \vdash e : \tau\]

\[
\text{T-Const} \quad \frac{}{\Gamma \vdash c : \text{int}}
\]

\[
\text{T-Var} \quad \frac{}{\Gamma \vdash x : \Gamma(x)}
\]

\[
\text{T-Fun} \quad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \quad x \notin \text{Dom}(\Gamma)}{\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2}
\]

\[
\text{T-App} \quad \frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau_1}
\]

Type Soundness

Theorem (Type Soundness). If \(\cdot \vdash e : \tau\) and \(e \rightarrow^* e'\), then either \(e'\) is a value or there exists an \(e''\) such that \(e' \rightarrow e''\).
Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach e' from e establishes that $\cdot \vdash e' : \tau$. Then the Progress Theorem ensures e' is a value or can step to some e''.

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If $\cdot \vdash v : \tau$, then

i If τ is int, then v is a constant, i.e., some c.

ii If τ is $\tau_1 \rightarrow \tau_2$, then v is a lambda, i.e., $\lambda x. e$ for some x and e.

Canonical Forms. The proof is by inspection of the typing rules.

i If τ is int, then the only rule which lets us give a value this type is T-Const.

ii If τ is $\tau_1 \rightarrow \tau_2$, then the only rule which lets us give a value this type is T-Fun.

Theorem (Progress). If $\cdot \vdash e : \tau$, then either e is a value or there exists some e' such that $e \rightarrow e'$.

Progress. The proof is by induction on (the height of) the derivation of $\cdot \vdash e : \tau$, proceeding by cases on the bottommost rule used in the derivation.

T-Const e is a constant, which is a value, so we are done.

T-Var Impossible, as Γ is \cdot.

T-Fun e is $\lambda x. e'$, which is a value, so we are done.

T-App e is $e_1 e_2$.

By inversion, $\cdot \vdash e_1 : \tau' \rightarrow \tau$ and $\cdot \vdash e_2 : \tau'$ for some τ'.

If e_1 is not a value, then $\cdot \vdash e_1 : \tau' \rightarrow \tau$ and the induction hypothesis ensures $e_1 \rightarrow e'_1$ for some e'_1. Therefore, by E-App1, $e_1 e_2 \rightarrow e'_1 e_2$.

Else e_1 is a value. If e_2 is not a value, then $\cdot \vdash e_2 : \tau'$ and our induction hypothesis ensures $e_2 \rightarrow e'_2$ for some e'_2. Therefore, by E-App2, $e_1 e_2 \rightarrow e_1 e'_2$.

Else e_1 and e_2 are values. Then $\cdot \vdash e_1 : \tau' \rightarrow \tau$ and the Canonical Forms Lemma ensures e_1 is some $\lambda x. e'$. And $(\lambda x. e') e_2 \rightarrow e'[e_2/x]$ by E-Apply, so $e_1 e_2$ can take a step.
Lemma (Substitution). If $\Gamma, x : \tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$, then $\Gamma \vdash e[e'/x] : \tau$.

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they’re not that difficult).

Lemma (Weakening). If $\Gamma \vdash e : \tau$ and $x \notin \text{Dom}(\Gamma)$, then $\Gamma, x : \tau' \vdash e : \tau$.

Lemma (Exchange). If $\Gamma, x : \tau_1, y : \tau_2 \vdash e : \tau$ and $y \neq x$, then $\Gamma, y : \tau_2, x : \tau_1 \vdash e : \tau$.

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of $\Gamma, x : \tau' \vdash e : \tau$. There are four cases. In all cases, we know $\Gamma \vdash e' : \tau'$ by assumption.

T-Const e is c, so $e[e'/x]$ is c. By T-Const, $\Gamma \vdash c : \text{int}$.

T-Var e is y and $\Gamma, x : \tau' \vdash y : \tau$.

If $y \neq x$, then $y[e'/x]$ is y. By inversion on the typing rule, we know that $(\Gamma, x : \tau')(y) = \tau$. Since $y \neq x$, we know that $\Gamma(y) = \tau$. So by T-Var, $\Gamma \vdash y : \tau$.

If $y = x$, then $y[e'/x]$ is e'. $\Gamma, x : \tau' \vdash x : \tau$, so by inversion, $(\Gamma, x : \tau')(x) = \tau$, so $\tau = \tau'$. We know $\Gamma \vdash e' : \tau'$, which is exactly what we need.

T-App e is $e_1 e_2$, so $e[e'/x]$ is $(e_1[e'/x]) (e_2[e'/x])$.

We know $\Gamma, x : \tau' \vdash e_1 e_2 : \tau_1$, so, by inversion on the typing rule, we know $\Gamma, x : \tau' \vdash e_1 : \tau_2 \rightarrow \tau_1$ and $\Gamma, x : \tau' \vdash e_2 : \tau_2$ for some τ_2.

Therefore, by induction, $\Gamma \vdash e_1[e'/x] : \tau_2 \rightarrow \tau_1$ and $\Gamma \vdash e_2[e'/x] : \tau_2$.

Given these, T-App lets us derive $\Gamma \vdash (e_1[e'/x]) (e_2[e'/x]) : \tau_1$.

So by the definition of substitution $\Gamma \vdash (e_1 e_2)[e'/x] : \tau_1$.

T-Fun e is $\lambda y. e_b$, so $e[e'/x]$ is $\lambda y. (e_b[e'/x])$.

We can α-convert $\lambda y . e_b$ to ensure $y \notin \text{Dom}(\Gamma)$ and $y \neq x$.

We know $\Gamma, x : \tau' \vdash \lambda y . e_b : \tau_1 \rightarrow \tau_2$, so, by inversion on the typing rule, we know $\Gamma, x : \tau', y : \tau_1 \vdash e_b : \tau_2$.

By Exchange, we know that $\Gamma, y : \tau_1, x : \tau' \vdash e_b : \tau_2$.

By Weakening, we know that $\Gamma, y : \tau_1 \vdash e' : \tau'$.

We have rearranged the two typing judgments so that our induction hypothesis applies (using $\Gamma, y : \tau_1$ for the typing context called Γ in the statement of the lemma), so, by induction, $\Gamma, y : \tau_1 \vdash e_b[e'/x] : \tau_2$.

Given this, T-Fun lets us derive $\Gamma \vdash \lambda y . e_b[e'/x] : \tau_1 \rightarrow \tau_2$.

So by the definition of substitution, $\Gamma \vdash (\lambda y . e_b)[e'/x] : \tau_1 \rightarrow \tau_2$.

3
Theorem (Preservation). If $\cdot \vdash e : \tau$ and $e \rightarrow e'$, then $\cdot \vdash e' : \tau$.

Preservation. The proof is by induction on the derivation of $\cdot \vdash e : \tau$. There are four cases.

T-Const e is c. This case is impossible, as there is no e' such that $c \rightarrow e'$.

T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is $\lambda x. e_b$. This case is impossible, as there is no e' such that $\lambda x. e_b \rightarrow e'$.

T-App e is $e_1 e_2$, so $\cdot \vdash e_1 e_2 : \tau$.

By inversion on the typing rule, $\cdot \vdash e_1 : \tau \rightarrow \tau$ and $\cdot \vdash e_2 : \tau \rightarrow \tau$ for some τ_2.

There are three possible rules for deriving $e_1 e_2 \rightarrow e'$.

E-App1 Then $e' = e'_1 e_2$ and $e_1 \rightarrow e'_1$.

By $\cdot \vdash e_1 : \tau \rightarrow \tau$, $e_1 \rightarrow e'_1$, and induction, $\cdot \vdash e'_1 : \tau \rightarrow \tau$.

Using this and $\cdot \vdash e_2 : \tau_2$, T-App lets us derive $\cdot \vdash e'_1 e_2 : \tau$.

E-App2 Then $e' = e_1 e'_2$ and $e_2 \rightarrow e'_2$.

By $\cdot \vdash e_2 : \tau_2$, $e_2 \rightarrow e'_2$, and induction $\cdot \vdash e'_2 : \tau_2$.

Using this and $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, T-App lets us derive $\cdot \vdash e'_1 e'_2 : \tau$.

E-Apply Then e_1 is $\lambda x. e_b$ for some x and e_b, and $e' = e_b[e_2/x]$.

By inversion of the typing of $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, we have $\cdot, x : \tau_2 \vdash e_b : \tau$.

This and $\cdot \vdash e_2 : \tau_2$ lets us use the Substitution Lemma to conclude $\cdot \vdash e_b[e_2/x] : \tau$.

\[\square \]