CSE-505: Programming Languages

Lecture 9 — Simply Typed Lambda Calculus

Zach Tatlock
2016

Review: L-R CBV Lambda Calculus

\[
\begin{align*}
\text{e} &::= \lambda x\text{. }e \mid x \mid ee \\
\text{v} &::= \lambda x\text{. }e
\end{align*}
\]

Implicit systematic renaming of bound variables
▶ \(\alpha\)-equivalence on expressions (“the same term”)

\[
\begin{align*}
e \rightarrow e' \\
(\lambda x\text{. }e) v \rightarrow e[v/x] \\
e_1 \rightarrow e'_1 \\
e_2 \rightarrow e'_2 \\
v e_2 \rightarrow v e'_2 \\
e_1[e_2/x] = e_3
\end{align*}
\]

\[
\begin{align*}
y \neq x &\quad e_1[e/x] = e'_1 \\
e_2[e/x] = e'_2 \\
(e_1 e_2)[e/x] = e'_1 e'_2
\end{align*}
\]

\[
\begin{align*}
x[e/x] = e \\
y[e/x] = y \\
(e_1 e_2)[e/x] = e'_1 e'_2
\end{align*}
\]

Introduction to Types

Naive thought: More powerful PLs are always better
▶ Be Turing Complete (e.g., Lambda Calculus or x86 Assembly)
▶ Have really flexible features (e.g., lambdas)
▶ Have conveniences to keep programs short

If this is the only metric, types are a step backward
▶ Whole point is to allow fewer programs
▶ A “filter” between abstract syntax and compiler/interpreter
▶ Fewer programs in language means less for a correct implementation

▶ So if types are a great idea, they must help with other desirable properties for a PL...

Types

Major new topic worthy of several lectures: Type systems
▶ Continue to use (CBV) Lambda Calculus as our core model
▶ But will soon enrich with other common primitives

This lecture:
▶ Motivation for type systems
▶ What a type system is designed to do and not do
▶ Definition of stuckness, soundness, completeness, etc.
▶ The Simply-Typed Lambda Calculus
▶ A basic and natural type system
▶ Starting point for more expressiveness later

Next lecture:
▶ Prove Simply-Typed Lambda Calculus is sound
1. Catch "simple" mistakes early, even for untested code
 ▶ Example: "if" applied to "mkpair"
 ▶ Even if some too-clever programmer meant to do it
 ▶ Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., $x \downarrow v$)
 ▶ Ensure execution never gets to a "meaningless" state
 ▶ But "meaningless" depends on the semantics
 ▶ Each PL typically makes some things type errors (again being conservative) and others run-time errors

3. Enforce encapsulation (an abstract type)
 ▶ Clients can’t break invariants
 ▶ Clients can’t assume an implementation
 ▶ Requires safety, meaning no "stuck" states that corrupt run-time (e.g., C/C++)
 ▶ Can enforce encapsulation without static types, but types are a particularly nice way

4. Assuming well-typedness allows faster implementations
 ▶ Smaller interfaces enable optimizations
 ▶ Don’t have to check for impossible states
 ▶ Orthogonal to safety (e.g., C/C++)

We’ll focus on (1), (2), and (3) and maybe (6)
Why types? (Part 2)

4. Assuming well-typedness allows faster implementations
 ▶ Smaller interfaces enable optimizations
 ▶ Don’t have to check for impossible states
 ▶ Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading
 ▶ Have symbol lookup depend on operands’ types
 ▶ Only modestly interesting semantically
 ▶ Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions
 ▶ Often via a “type-and-effect” system
 ▶ Deep similarities in analyses suggest type systems a good way to think-about/define/prove what you’re checking
 ▶ Uncaught exceptions, tainted data, non-termination, IO performed, data races, dangling pointers, ...

We’ll focus on (1), (2), and (3) and maybe (6)

What is a type system?

Er, uh, you know it when you see it. Some clues:
▶ A decidable (?) judgment for classifying programs
 ▶ E.g., $e_1 + e_2$ has type int if e_1, e_2 have type int (else no type)
▶ A sound (?) abstraction of computation
 ▶ E.g., if $e_1 + e_2$ has type int, then evaluation produces an int (with caveats!)
▶ Fairly syntax directed
 ▶ Non-example (?): e terminates within 100 steps
▶ Particularly fuzzy distinctions with abstract interpretation
▶ Possible topic for a later lecture
▶ Often a more natural framework for flow-sensitive properties
▶ Types often more natural for higher-order programs

This is a CS-centric, PL-centric view. Foundational type theory has more rigorous answers
▶ Later lecture: Typed PLs are like proof systems for logics
Plan for 3ish weeks

- Simply typed λ calculus
- (Syntactic) Type Soundness (i.e., safety)
- Extensions (pairs, sums, lists, recursion)

Break for the Curry-Howard isomorphism; continuations; midterm

- Subtyping
- Polymorphic types (generics)
- Recursive types
- Abstract types
- Effect systems

Homework: Adding back mutation
Omitted: Type inference

Adding constants

Enrich the Lambda Calculus with integer constants:

- Not strictly necessary, but makes types seem more natural

$$
\begin{align*}
 e & ::= \lambda x. e \mid x \mid e \ e \mid c \\
 v & ::= \lambda x. e \mid c
\end{align*}
$$

No new operational-semantics rules since constants are values

We could add $+$ and other primitives

- Then we would need new rules (e.g., 3 small-step for $+$)
- Alternately, parameterize “programs” by primitives:
 λplus. λtimes. ... e
 - Like Pervasives in OCaml
 - A great way to keep language definitions small

Stuck

Key issue: can a program “get stuck” (reach a “bad” state)?

- Definition: e is stuck if e is not a value and there is no e' such that $e \rightarrow e'$
- Definition: e can get stuck if there exists an e' such that $e \rightarrow^* e'$ and e' is stuck
 - In a deterministic language, e "gets stuck"

Most people don’t appreciate that stuckness depends on the operational semantics

- Inherent given the definitions above

What’s stuck?

Given our language, what are the set of stuck expressions?

- Note: Explicitly defining the stuck states is unusual

$$
\begin{align*}
 e & ::= \lambda x. e \mid x \mid e \ e \mid c \\
 v & ::= \lambda x. e \mid c \\
 (\lambda x. e) v & \rightarrow e[v/x] \\
 e_1 e_2 & \rightarrow e_1' e_2 \\
 v e_2 & \rightarrow v e_2'
\end{align*}
$$

(Hint: The full set is recursively defined.)
What's stuck?

Given our language, what are the set of stuck expressions?

▶ Note: Explicitly defining the stuck states is unusual

\[e ::= \lambda x. e \mid x \mid e \ e \mid c \]
\[v ::= \lambda x. e \mid c \]

\[
\begin{array}{c}
(\lambda x. e) \ v \rightarrow e[v/x] \\
\frac{e_1 \rightarrow e_1'}{e_1 e_2 \rightarrow e_1' e_2} \\
\frac{e_2 \rightarrow e_2'}{v \ e_2 \rightarrow v \ e_2'}
\end{array}
\]

(Hint: The full set is recursively defined.)

\[S ::= \ x \mid c \ v \mid S \ e \mid v \ S \]

What's stuck?

Given our language, what are the set of stuck expressions?

▶ Note: Explicitly defining the stuck states is unusual

\[e ::= \lambda x. e \mid x \mid e \ e \mid c \]
\[v ::= \lambda x. e \mid c \]

\[
\begin{array}{c}
(\lambda x. e) \ v \rightarrow e[v/x] \\
\frac{e_1 \rightarrow e_1'}{e_1 e_2 \rightarrow e_1' e_2} \\
\frac{e_2 \rightarrow e_2'}{v \ e_2 \rightarrow v \ e_2'}
\end{array}
\]

(Hint: The full set is recursively defined.)

\[S ::= \ x \mid c \ v \mid S \ e \mid v \ S \]

Soundness and Completeness

A type system is a judgment for classifying programs

▶ “accepts” a program if some complete derivation gives it a type, else “rejects”

A sound type system never accepts a program that can get stuck

▶ No false negatives

A complete type system never rejects a program that can’t get stuck

▶ No false positives

It is typically undecidable whether a stuck state can be reachable

▶ Corollary: If we want an algorithm for deciding if a type system accepts a program, then the type system cannot be sound and complete

▶ We’ll choose soundness, try to reduce false positives in practice

Wrong Attempt

\[\tau ::= \ \text{int} \mid \text{fn} \]

\[\vdash \ e : \tau \]

\[
\begin{array}{c}
\vdash \lambda x. \ e : \text{fn} \\
\vdash c : \text{int} \\
\vdash e_1 e_2 : \text{int}
\end{array}
\]

Note: Can have fewer stuck states if we add more rules

▶ Example: Javascript

▶ Example: \(c \ v \rightarrow v \)

▶ In unsafe languages, stuck states can set the computer on fire
Wrong Attempt

\[\tau ::= \text{int} \mid \text{fn} \]

\[\vdash e : \tau \]

\[\vdash \lambda x. e : \text{fn} \]

\[\vdash e_1 : \text{fn} \]

\[\vdash e_2 : \text{int} \]

\[\vdash e_1 e_2 : \text{int} \]

1. NO: can get stuck, e.g., \((\lambda x. y) 3\)
2. NO: too restrictive, e.g., \((\lambda x. x 3) (\lambda y. y)\)
3. NO: types not preserved, e.g., \((\lambda x. \lambda y. y) 3\)

Getting it right

1. Need to type-check function bodies, which have free variables
2. Need to classify functions using argument and result types

For (1): \(\Gamma ::= \cdot \mid \Gamma, x : \tau\) and \(\Gamma \vdash e : \tau\)

- Require whole program to type-check under empty context \(\cdot\)

For (2): \(\tau ::= \text{int} \mid \tau \to \tau\)

- An infinite number of types: \(\text{int} \to \text{int}, (\text{int} \to \text{int}) \to \text{int}, \text{int} \to (\text{int} \to \text{int}), \ldots\)

Concrete syntax note: \(\to\) is right-associative, so \(\tau_1 \to \tau_2 \to \tau_3 \) is \(\tau_1 \to (\tau_2 \to \tau_3)\)

STLC Type System

\[\tau ::= \text{int} \mid \tau \to \tau \]

\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash c : \text{int} \]

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

\[\Gamma \vdash \lambda x. e : \tau_1 \to \tau_2 \]

\[\Gamma \vdash e_1 : \tau_2 \to \tau_1 \]

\[\Gamma \vdash e_2 : \tau_2 \]

\[\Gamma \vdash e_1 e_2 : \tau_1 \]

A closer look

Where did \(\tau_1\) come from?

- Our rule “inferred” or “guessed” it
- To be syntax directed, change \(\lambda x. e\) to \(\lambda x : \tau. e\) and use that \(\tau\)

Can think of “adding \(x\)” as shadowing or requiring \(x \not\in \text{Dom}(\Gamma)\)

- Systematic renaming (\(\alpha\)-conversion) ensures \(x \not\in \text{Dom}(\Gamma)\) is not a problem

The \textit{function-introduction} rule is the interesting one...
A closer look

$$\Gamma, x : \tau_1 \vdash e : \tau_2$$
$$\Gamma \vdash \lambda x. \ e : \tau_1 \to \tau_2$$

Is our type system too restrictive?

- That’s a matter of opinion
- But it does reject programs that don’t get stuck

Example: \((\lambda x. \ (x \ (\lambda y. \ y)) \ (x \ 3)) \ \lambda z. \ z\)

- Does not get stuck: Evaluates to 3
- Does not type-check:
 - There is no \(\tau_1, \tau_2\) such that \(x : \tau_1 \vdash (x \ (\lambda y. \ y)) \ (x \ 3) : \tau_2\)
 - because you have to pick one type for \(x\)

How does STLC measure up?

So far, STLC is sound:

- As language dictators, we decided \(c \ v\) and undefined variables were “bad” meaning neither values nor reducible
- Our type system is a conservative checker that an expression will never get stuck

But STLC is far too restrictive:

- In practice, just too often that it prevents safe and natural code reuse
- More fundamentally, it’s not even Turing-complete
 - Turns out all (well-typed) programs terminate
 - A good-to-know and useful property, but inappropriate for a general-purpose PL
 - That’s okay: We will add more constructs and typing rules

Always restrictive

Whether or not a program “gets stuck” is undecidable:

- If \(e\) has no constants or free variables, then \(e \ (3 \ 4)\) or \(e \ x\) gets stuck if and only if \(e\) terminates (cf. the halting problem)

Old conclusion: “Strong types for weak minds”

- Need a back door (unchecked casts)

Modern conclusion: Unsafe constructs almost never worth the risk

- Make “false positives” (rejecting safe program) rare enough
 - Have compile-time resources for “fancy” type systems
 - Make workarounds for false positives convenient enough

Type Soundness

We will take a syntactic (operational) approach to soundness/safety

- The popular way since the early 1990s

Theorem (Type Safety): If \(\cdot \vdash e \ : \ \tau\) then \(e\) diverges or \(e \ \rightarrow^n \ v\) for an \(n\) and \(v\) such that \(\cdot \vdash v : \tau\)

- That is, if \(\cdot \vdash e \ : \ \tau\), then \(e\) cannot get stuck

Proof: Next lecture