Packet Filters

A very simple view of packet filters:
- Some bits come in off the wire
- Some application(s) want the “packet” and some do not (e.g., port number)
- For safety, only the O/S can access the wire
- For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:
1. Do not corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and “hope” it has these properties?
Language-based approaches

1. Interpret a language
 + clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly
 + clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly
 + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)

A General Pattern

Packet filters move the code to the data rather than data to the code

General reasons: performance, security, other?

Other examples:
- Query languages
- Active networks
- Client-side web scripts (Javascript)

Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer

- Semantics equivalence (we change the language):
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Note: Proofs may seem easy with the right semantics and lemmas
 - (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more interesting things
What is equivalence?

Equivalence depends on what is *observable*!

- Partial I/O equivalence (if terminates, same ans)
 - *while 1 skip* equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)

- Total heap equivalence (same termination behavior, same heaps)

- All (almost all?) variables have the same value

- Equivalence plus complexity bounds

- Is $O(2^n)$ really equivalent to $O(n^2)$?

- Is “runs within 10ms of each other” important?

- Syntactic equivalence (perhaps with renaming)

- Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Zach Tatlock
CSE-505 2016, Lecture 6 8
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - **while 1 skip** equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - All (almost all?) variables have the same value
- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?
 - Is “runs within 10ms of each other” important?
- Syntactic equivalence (perhaps with renaming)
 - Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence
Program Example: Strength Reduction

Motivation: Strength reduction

▶ A common compiler optimization due to architecture issues

Theorem: $H ; e \ast 2 \downarrow c$ if and only if $H ; e + e \downarrow c$

Proof sketch:

▶ Prove separately for each direction

▶ Invert the assumed derivation, use hypotheses plus a little math to derive what we need

Zach Tatlock CSE-505 2016, Lecture 6 9
Program Example: Nested Strength Reduction

Theorem: If \(e' \) has a subexpression of the form \(e \ast 2 \),
then \(H ; e' \downarrow c' \) if and only if \(H ; e'' \downarrow c' \)
where \(e'' \) is \(e' \) with \(e \ast 2 \) replaced with \(e + e \)

First some useful metanotation:

\[
C ::= \, [\cdot] \mid C + e \mid e + C \mid C \ast e \mid e \ast C
\]

\(C[e] \) is “\(C \) with \(e \) in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:

\(H \; C[e \ast 2] \downarrow c' \) if and only if \(H \; C[e + e] \downarrow c' \)

Proof sketch: By induction on structure (“syntax height”) of \(C \)

- The base case (\(C = [\cdot] \)) follows from our previous proof
- The rest is a long, tedious, (and instructive!) induction

Proof reuse

As we cannot emphasize enough, proving is just like programming

The proof of nested strength reduction had nothing to do with
\(e \ast 2 \) and \(e + e \) except in the base case where we used our
previous theorem

A much more useful theorem would parameterize over the base
case so that we could get the “nested \(X \)” theorem for any
appropriate \(X \):

\[
\text{If } (H \; e_1 \downarrow c \text{ if and only if } H \; e_2 \downarrow c),
\text{then } (H \; C[e_1] \downarrow c' \text{ if and only if } H \; C[e_2] \downarrow c')
\]

The proof is identical except the base case is “by assumption”
Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,
(a) For all \(n \), if \(H ; s_1 ; (s_2 ; s_3) \xrightarrow{n} H' ; \text{skip} \) then there exist \(H'' \) and \(n' \) such that \(H ; (s_1 ; s_2) ; s_3 \xrightarrow{n'} H'' ; \text{skip} \) and \(H''(\text{ans}) = H'(\text{ans}) \).
(b) If for all \(n \) there exist \(H' \) and \(s' \) such that \(H ; s_1 ; (s_2 ; s_3) \xrightarrow{n} H' ; s' \), then for all \(n \) there exist \(H'' \) and \(s'' \) such that \(H ; (s_1 ; s_2) ; s_3 \xrightarrow{n} H'' ; s'' \). (Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.

Language Equivalence Example

IMP w/o multiply large-step:

\[
\begin{align*}
\text{CONST} & : H ; c \downarrow c \\
\text{VAR} & : H ; x \downarrow H(x) \\
\text{ADD} & : H ; e_1 \downarrow c_1 \quad H ; e_2 \downarrow c_2 \\
& \quad \quad \quad \text{H ; e} \downarrow c \quad \text{if and only if} \\
& \quad \quad \quad \text{H ; e \rightarrow* c}
\end{align*}
\]

IMP w/o multiply small-step:

\[
\begin{align*}
\text{SVAR} & : H ; x \rightarrow H(x) \\
\text{SADD} & : H ; c_1 + c_2 \rightarrow c_1 + c_2 \\
\text{SLEFT} & : H ; e_1 \rightarrow e'_1 \\
& \quad \quad \quad \text{H ; e} \rightarrow e \quad \text{if and only if} \\
& \quad \quad \quad \text{H ; e \rightarrow* e} \\
\text{SRIGHT} & : H ; e_1 + e_2 \rightarrow e_1 + e_2
\end{align*}
\]

Theorem: Semantics are equivalent: \(H ; e \downarrow c \) if and only if \(H ; e \rightarrow* c \)

Proof: We prove the two directions separately...

Proof, part 1

First assume \(H ; e \downarrow c \) and show \(\exists n. H ; e \rightarrow^n c \)

Lemma (prove it!): If \(H ; e \rightarrow^n e' \), then \(H ; e_1 + e \rightarrow^n e_1 + e' \)

- Proof by induction on \(n \)
- Inductive case uses SLEFT and SRIGHT
Proof, part 1

First assume \(H ; e \Downarrow c \) and show \(\exists n. H ; e \rightarrow^n c \)

Lemma (prove it!): If \(H ; e \rightarrow^n e' \), then \(H ; e_1 + e \rightarrow^n e_1 + e' \)
and \(H ; e + e_2 \rightarrow^n e' + e_2 \).
 ▶ Proof by induction on \(n \)
 ▶ Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of \(H ; e \Downarrow c \)
 ▶ CONST: Derivation with CONST implies \(e = c \), and we can derive \(H ; c \rightarrow^0 c \)
 ▶ VAR: Derivation with VAR implies \(e = x \) for some \(x \) where \(H(x) = c \), so derive \(H ; e \rightarrow^1 c \) with SVAR

Proof, part 1

First assume \(H ; e \Downarrow c \) and show \(\exists n. H ; e \rightarrow^n c \)

Lemma (prove it!): If \(H ; e \rightarrow^n e' \), then \(H ; e_1 + e \rightarrow^n e_1 + e' \)
and \(H ; e + e_2 \rightarrow^n e' + e_2 \).
 ▶ Proof by induction on \(n \)
 ▶ Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of \(H ; e \Downarrow c \)
 ▶ CONST: Derivation with CONST implies \(e = c \), and we can derive \(H ; c \rightarrow^0 c \)
 ▶ VAR: Derivation with VAR implies \(e = x \) for some \(x \) where \(H(x) = c \), so derive \(H ; e \rightarrow^1 c \) with SVAR
 ▶ ADD: ...
Part 1, continued

First assume $H; e \Downarrow c$ and show $\exists n. H; e \to^n c$

Lemma (prove it!): If $H; e \to^n e'$, then $H; e_1 + e \to^n e_1 + e'$ and $H; e + e_2 \to^n e' + e_2$.

Given the lemma, prove by induction on derivation of $H; e \Downarrow c$

► ...

► ADD: Derivation with ADD implies $e = e_1 + e_2$, $c = c_1 + c_2$, $H; e_1 \Downarrow c_1$, and $H; e_2 \Downarrow c_2$ for some e_1, e_2, c_1, c_2.

By induction (twice), $H; e_1 \to^{n_1} c_1$ and $H; e_2 \to^{n_2} c_2$.

So by our lemma $H; e_1 + e_2 \to^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \to^{n_2} c_1 + c_2$.

Part 1, continued

First assume $H; e \Downarrow c$ and show $\exists n. H; e \to^n c$

Lemma (prove it!): If $H; e \to^n e'$, then $H; e_1 + e \to^n e_1 + e'$ and $H; e + e_2 \to^n e' + e_2$.

Given the lemma, prove by induction on derivation of $H; e \Downarrow c$

► ...

► ADD: Derivation with ADD implies $e = e_1 + e_2$, $c = c_1 + c_2$, $H; e_1 \Downarrow c_1$, and $H; e_2 \Downarrow c_2$ for some e_1, e_2, c_1, c_2.

By induction (twice), $H; e_1 \to^{n_1} c_1$ and $H; e_2 \to^{n_2} c_2$.

So by our lemma $H; e_1 + e_2 \to^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \to^{n_2} c_1 + c_2$.

By SADD $H; c_1 + c_2 \to^{n_2} c_1 + c_2$.
Part 1, continued

First assume $H; e \downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$.

Given the lemma, prove by induction on derivation of $H; e \downarrow c$

\triangleright ...

\triangleright ADD: Derivation with ADD implies $e = e_1 + e_2$, $c = c_1 + c_2$, $H; e_1 \downarrow c_1$, and $H; e_2 \downarrow c_2$ for some e_1, e_2, c_1, c_2.

By induction (twice), $\exists n_1, n_2. H; e_1 \rightarrow^{n_1} c_1$ and $H; e_2 \rightarrow^{n_2} c_2$.

So by our lemma $H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$.

By SADD $H; c_1 + c_2 \rightarrow c_1 + c_2$.

So $H; e_1 + e_2 \rightarrow^{n_1 + n_2 + 1} c$.

Proof, part 2

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \downarrow c$.

Proof by induction on n:

$\triangleright n = 0$: e is c and CONST lets us derive $H; c \downarrow c$
Proof, part 2

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \downarrow c$.

Proof by induction on n:

- **$n = 0$**: e is c and \texttt{CONST} lets us derive $H; c \downarrow c$
- **$n > 0$**: (Clever: break into first step and remaining ones)
 \[\exists e'. H; e \rightarrow e' \text{ and } H; e' \rightarrow^{n-1} c.\]

 By induction $H; e' \downarrow c$.

So this lemma suffices: If $H; e \rightarrow e'$ and $H; e' \downarrow c$, then $H; e \downarrow c$.

Proof, part 2

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \downarrow c$.

Proof by induction on n:

- **$n = 0$**: e is c and \texttt{CONST} lets us derive $H; c \downarrow c$
- **$n > 0$**: (Clever: break into first step and remaining ones)
 \[\exists e'. H; e \rightarrow e' \text{ and } H; e' \rightarrow^{n-1} c.\]

 By induction $H; e' \downarrow c$.

So this lemma suffices: If $H; e \rightarrow e'$ and $H; e' \downarrow c$, then $H; e \downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

- \texttt{SVAR}: ...
- \texttt{SADD}: ...
- \texttt{SLEFT}: ...
- \texttt{SRIGHT}: ...

Part 2, key lemma

Lemma: If $H; e \rightarrow e'$ and $H; e' \downarrow c$, then $H; e \downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

\triangleright sleft: Derivation with sleft implies e is some x and $e' = H(x) = c$, so derive, by VAR, $H; x \downarrow H(x)$.

\triangleright sadd: Derivation with sadd implies e is some $c_1 + c_2$ and $e' = c_1 + c_2 = c$, so derive, by ADD and two CONST, $H; c_1 + c_2 \downarrow c_1 + c_2$.

\triangleright svar: Derivation with svar implies e is some x and $e' = H(x) = c$, so derive, by VAR, $H; x \downarrow H(x)$.

\triangleright sadd: Derivation with sadd implies e is some $c_1 + c_2$ and $e' = c_1 + c_2 = c$, so derive, by ADD and two CONST, $H; c_1 + c_2 \downarrow c_1 + c_2$.

\triangleright sleft: Derivation with sleft implies $e = e_1 + e_2$ and $e' = e'_1 + e_2$ and $H; e_1 \rightarrow e'_1$ for some e_1, e_2, e'_1.
Lemma: If $H; e \rightarrow e'$ and $H; e' \downarrow c$, then $H; e \downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

- **svar**: Derivation with *svar* implies e is some x and $e' = H(x) = c$, so derive, by VAR, $H; x \downarrow H(x)$.
- **sadd**: Derivation with *sadd* implies e is some $c_1 + c_2$ and $e' = c_1 + c_2 = c$, so derive, by ADD and two CONST, $H; c_1 + c_2 \downarrow c_1 + c_2$.
- **sleft**: Derivation with *sleft* implies $e = e_1 + e_2$ and $e' = e_1' + e_2$ and $H; e_1 \rightarrow e_1'$ for some e_1, e_2, e_1'. Since $e' = e_1' + e_2$ inverting assumption $H; e' \downarrow c$ gives $H; e_1' \downarrow c_1, H; e_2 \downarrow c_2$ and $c = c_1 + c_2$.

So use ADD, $H; e_1 \downarrow c_1$, and $H; e_2 \downarrow c_2$ to derive $H; e_1 + e_2 \downarrow c_1 + c_2$.

Lemma: If $H; e \rightarrow e'$ and $H; e' \downarrow c$, then $H; e \downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

- **svar**: Derivation with *svar* implies e is some x and $e' = H(x) = c$, so derive, by VAR, $H; x \downarrow H(x)$.
- **sadd**: Derivation with *sadd* implies e is some $c_1 + c_2$ and $e' = c_1 + c_2 = c$, so derive, by ADD and two CONST, $H; c_1 + c_2 \downarrow c_1 + c_2$.
- **sleft**: Derivation with *sleft* implies $e = e_1 + e_2$ and $e' = e_1' + e_2$ and $H; e_1 \rightarrow e_1'$ for some e_1, e_2, e_1'. Since $e' = e_1' + e_2$ inverting assumption $H; e' \downarrow c$ gives $H; e_1' \downarrow c_1, H; e_2 \downarrow c_2$ and $c = c_1 + c_2$.

Applying the induction hypothesis to $H; e_1 \rightarrow e_1'$ and $H; e_1' \downarrow c_1$ gives $H; e_1 \downarrow c_1$.

So use ADD, $H; e_1 \downarrow c_1$, and $H; e_2 \downarrow c_2$ to derive $H; e_1 + e_2 \downarrow c_1 + c_2$.

- **sright**: Analogous to *sleft*
The cool part, redux

Step through the sleft case more visually:

By assumption, we must have derivations that look like this:

\[
\begin{align*}
& H; e_1 \rightarrow e_1' \\
& H; e_1 + e_2 \rightarrow e_1' + e_2 \\
& H; e_1 \downarrow c_1 \\
& H; e_2 \downarrow c_2 \\
& H; e_1 + e_2 \downarrow c_1 + c_2
\end{align*}
\]

Grab the hypothesis from the left and the left hypothesis from the right and use induction to get \(H; e_1 \downarrow c_1 \).

Now go grab the one hypothesis we haven’t used yet and combine it with our inductive result to derive our answer:

\[
\begin{align*}
& H; e_1 \downarrow c_1 \\
& H; e_2 \downarrow c_2 \\
& H; e_1 + e_2 \downarrow c_1 + c_2
\end{align*}
\]

A nice payoff

Theorem: The small-step semantics is deterministic:
if \(H; e \rightarrow^* c_1 \) and \(H; e \rightarrow^* c_2 \), then \(c_1 = c_2 \)

Not obvious (see sleft and sright), nor do I know a direct proof

- Given \(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)\) there are many execution sequences, which all produce 36 but with different intermediate expressions

Proof:

- Large-step evaluation is deterministic (easy induction proof)
- Small-step and and large-step are equivalent (just proved that)
- So small-step is deterministic
- Convince yourself a deterministic and a nondeterministic semantics cannot be equivalent
Conclusions

▶ Equivalence is a subtle concept
▶ Proofs “seem obvious” only when the definitions are right
▶ Some other language-equivalence claims:

Replace while rule with

\[
\begin{align*}
H ; e \Downarrow c & \quad c \leq 0 \\
H ; \text{while } e \text{ s } & \to H ; \text{skip} \\
H ; e \Downarrow c & \quad c > 0 \\
H ; \text{while } e \text{ s } & \to H ; s ; \text{while } e \text{ s}
\end{align*}
\]

Equivalent to our original language

Replace WHILE rule with

\[
\begin{align*}
H ; e \Downarrow c & \quad c \leq 0 \\
H ; \text{while } e \text{ s } & \to H ; \text{skip} \\
H ; e \Downarrow c & \quad c > 0 \\
H ; \text{while } e \text{ s } & \to H ; s ; \text{while } e \text{ s}
\end{align*}
\]

Equivalent to our original language

Change syntax of heap and replace assign and var rules with

\[
\begin{align*}
H ; x := e & \to H, x \mapsto e ; \text{skip} \\
H ; H(x) \Downarrow c & \to H ; x \Downarrow c
\end{align*}
\]
Conclusions

▶ Equivalence is a subtle concept
▶ Proofs “seem obvious” only when the definitions are right
▶ Some other language-equivalence claims:

Replace \texttt{WHILE} rule with

\[
\frac{H; e \Downarrow c \quad c \leq 0}{H; \text{while } e \mathrel{s} \to H; \text{skip}} \quad \frac{H; e \Downarrow c \quad c > 0}{H; \text{while } e \mathrel{s} \to H; s; \text{while } e \mathrel{s}}
\]

Equivalent to our original language

Change syntax of heap and replace \texttt{ASSIGN} and \texttt{VAR} rules with

\[
\frac{H; x := e \to H, x \mapsto e; \text{skip}}{H; H(x) \Downarrow c}
\]

\[
\frac{H; x \Downarrow c}{H; \text{skip}}
\]

\textit{NOT} equivalent to our original language