Where we are

- Done: OCaml tutorial, “IMP” syntax, structural induction
- Now: Operational semantics for our little “IMP” language
 - Most of what you need for Homework 1
 - (But Problem 4 requires proofs over semantics)

Review

IMP’s abstract syntax is defined inductively:

\[
\begin{align*}
 s & ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ s s} \mid \text{while } e \text{ s} \\
 e & ::= c \mid x \mid e + e \mid e \ast e \\
 (c & \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\
 (x & \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\end{align*}
\]

We haven’t yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow

Outline

- Semantics for expressions
 1. Informal idea; the need for heaps
 2. Definition of heaps
 3. The evaluation judgment (a relation form)
 4. The evaluation inference rules (the relation definition)
 5. Using inference rules
 - Derivation trees as interpreters
 - Or as proofs about expressions
 6. Metatheory: Proofs about the semantics
- Then semantics for statements
 - ...
Informal idea

Given e, what c does e evaluate to?

$1 + 2 \ x + 2$

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

- Could use partial functions, but then $\exists H$ and e for which there is no c

We'll define a relation over triples of H, e, and c

- Will turn out to be function if we view H and e as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

Heaps

$H ::= \cdot | H, x \mapsto c$

A lookup-function for heaps:

$$H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot
\end{cases}$$

- Last case avoids “errors” (makes function total)

“What heap to use” will arise in the semantics of statements

- For expression evaluation, “we are given an H”

The judgment

We will write: $H ; e \Downarrow c$

to mean, “e evaluates to c under heap H”

It is just a relation on triples of the form (H, e, c)

We just made up metasyntax $H ; e \Downarrow c$ to follow PL convention and to distinguish it from other relations

We can write: $\cdot, x \mapsto 3 \ ; \ x + y \Downarrow 3$, which will turn out to be true
(this triple will be in the relation we define)

Or: $\cdot, x \mapsto 3 \ ; \ x + y \Downarrow 6$, which will turn out to be false
(this triple will not be in the relation we define)
Inference rules

CONST

\[H \ ; c \downarrow c \]

VAR

\[H \ ; x \downarrow H(x) \]

ADD

\[H \ ; e_1 \downarrow c_1 \quad H \ ; e_2 \downarrow c_2 \quad \frac{H \ ; e_1 + e_2 \downarrow c_1 + c_2}{H \ ; e_1 \downarrow c_1} \]

MULT

\[H \ ; e_1 \downarrow c_1 \quad H \ ; e_2 \downarrow c_2 \quad \frac{H \ ; e_1 \downarrow c_1 \downarrow c_2}{H \ ; e_1 * e_2 \downarrow c_1 * c_2} \]

Top: hypotheses
Bottom: conclusion (read first)

By definition, if all hypotheses hold, then the conclusion holds.

Each rule is a schema you “instantiate consistently”

- So rules “work” “for all” \(H, c, e_1, \text{ etc.} \)
- But “each” \(e_1 \) has to be the “same” expression

Instantiating rules

Example instantiation:

\[
\begin{align*}
\cdot, y \mapsto & \ 4 ; 3 + y \downarrow 7 \\
\cdot, y \mapsto & \ 4 ; 5 \downarrow 5
\end{align*}
\]

\[
\begin{align*}
\cdot, y \mapsto & \ 4 ; (3 + y) + 5 \downarrow 12
\end{align*}
\]

Instantiates:

ADD

\[H \ ; e_1 \downarrow c_1 \quad H \ ; e_2 \downarrow c_2 \quad \frac{H \ ; e_1 \downarrow c_1 \downarrow c_2}{H \ ; e_1 + e_2 \downarrow c_1 + c_2} \]

with

- \(H = \cdot, y \mapsto 4 \)
- \(e_1 = (3 + y) \)
- \(c_1 = 7 \)
- \(e_2 = 5 \)
- \(c_2 = 5 \)

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves.

Example:

\[
\begin{align*}
\cdot, y \mapsto & \ 4 ; 3 \downarrow 3 \\
\cdot, y \mapsto & \ 4 ; y \downarrow 4
\end{align*}
\]

\[
\begin{align*}
\cdot, y \mapsto & \ 4 ; 3 + y \downarrow 7 \\
\cdot, y \mapsto & \ 4 ; 5 \downarrow 5
\end{align*}
\]

\[
\cdot, y \mapsto 4 ; (3 + y) + 5 \downarrow 12
\]

By definition, \(H ; e \downarrow c \) if there exists a derivation with \(H ; e \downarrow c \) at the root

Back to relations

So what relation do our inference rules define?

- Start with empty relation (no triples) \(R_0 \)
- Let \(R_i \) be \(R_{i-1} \) union all \(H ; e \downarrow c \) such that we can instantiate some inference rule to have conclusion \(H ; e \downarrow c \) and all hypotheses in \(R_{i-1} \)
 - So \(R_i \) is all triples at the bottom of height-\(j \) complete derivations for \(j \leq i \)
- \(R_\infty \) is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: \(R_\infty \) is the smallest relation closed under the inference rules
What are these things?

We can view the inference rules as defining an *interpreter*

- Complete derivation shows recursive calls to the “evaluate expression” function
 - Recursive calls from conclusion to hypotheses
 - *Syntax-directed* means the interpreter need not “search”

- See OCaml code in Homework 1

Or we can view the inference rules as defining a *proof system*

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions

Some theorems

- **Progress**: For all H and e, there exists a c such that $H ; e \Downarrow c$

- **Determinacy**: For all H and e, there is at most one c such that $H ; e \Downarrow c$

We rigged it that way...
what would division, undefined-variables, or `gettime()` do?

Proofs are by induction on the the structure (i.e., height) of the expression e

On to statements

A statement does not produce a constant

It produces a new, possibly-different heap.

- If it terminates
On to statements

A statement does not produce a constant
It produces a new, possibly-different heap.

▶ If it terminates
We could define $H_1; s \downarrow H_2$
▶ Would be a partial function from H_1 and s to H_2
▶ Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”

$H_1; s_1 \rightarrow H_2; s_2$

Statement semantics

\[
\begin{align*}
H_1; s_1 & \rightarrow H_2; s_2 \\
\text{assign} & \\
H; e \downarrow c & \quad \Rightarrow \\
H; x := e & \quad \rightarrow H, x \mapsto c; \text{skip}
\end{align*}
\]

\[
\begin{align*}
\text{seq1} & \\
H; \text{skip}; s & \rightarrow H; s \\
\text{seq2} & \\
H; s_1 & \rightarrow H'; s'_1 \\
H; s_1; s_2 & \rightarrow H'; s'_1; s_2 \\
\text{if1} & \\
H; e \downarrow c & \quad c > 0 \\
H; \text{if } e \text{ s}_1 \text{ s}_2 & \rightarrow H; s_1 \\
\text{if2} & \\
H; e \downarrow c & \quad c \leq 0 \\
H; \text{if } e \text{ s}_1 \text{ s}_2 & \rightarrow H; s_2
\end{align*}
\]
Statement semantics cont’d

What about `while e s` (do `s` and loop if `e > 0`)?

\[
\text{WHILE} \quad H ; \text{while } e \ s \rightarrow H ; \text{if } e \ (s ; \text{while } e \ s) \ 	ext{skip}
\]

Many other equivalent definitions possible

Program semantics

Defined \(H ; s \rightarrow H' ; s' \), but what does “s” mean/do?

Our machine iterates: \(H_1 ; s_1 \rightarrow H_2 ; s_2 \rightarrow H_3 ; s_3 \ldots \), with each step justified by a complete derivation using our single-step statement semantics

Let \(H_1 ; s_1 \rightarrow^n H_2 ; s_2 \) mean “becomes after \(n \) steps”

Let \(H_1 ; s_1 \rightarrow^* H_2 ; s_2 \) mean “becomes after 0 or more steps”

Pick a special “answer” variable \(\text{ans} \)

The program \(s \) produces \(c \) if \(\cdot ; s \rightarrow^* H ; \text{skip} \) and \(H(\text{ans}) = c \)

Does every \(s \) produce a \(c \)?

Example program execution

\[
x := 3; (y := 1; \text{while } x \ (y := y \times x; x := x-1))
\]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; x := x-1) \).

Example program execution

\[
x := 3; (y := 1; \text{while } x \ (y := y \times x; x := x-1))
\]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; x := x-1) \).
Example program execution

\begin{align*}
 x &:= 3; (y := 1; \textbf{while } x (y := y \times x; x := x - 1)) \\
\end{align*}

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; x := x - 1) \).

\begin{align*}
 \cdot; x := 3; y := 1; &\textbf{while } x \ s \\
 \quad \rightarrow &\cdot, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while } x \ s \\
 \quad \rightarrow &\cdot, x \mapsto 3; y := 1; \textbf{while } x \ s \\
 \quad \rightarrow^2 &\cdot, x \mapsto 3, y \mapsto 1; \textbf{while } x \ s
\end{align*}

Example program execution

\begin{align*}
 x &:= 3; (y := 1; \textbf{while } x (y := y \times x; x := x - 1)) \\
\end{align*}

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; x := x - 1) \).

\begin{align*}
 \cdot; x := 3; y := 1; &\textbf{while } x \ s \\
 \quad \rightarrow &\cdot, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while } x \ s \\
 \quad \rightarrow &\cdot, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while } x \ s \\
 \quad \rightarrow^2 &\cdot, x \mapsto 3, y \mapsto 1; \textbf{while } x \ s \\
 \quad \rightarrow^2 &\cdot, x \mapsto 3, y \mapsto 1; \textbf{if } x (s; \textbf{while } x \ s) \textbf{ skip}
\end{align*}
Example program execution

\[
x := 3; (y := 1; \textbf{while } x \ (y := y \ast x; x := x-1))
\]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \ast x; x := x-1) \).

\[
\bullet; x := 3; y := 1; \textbf{while } x s
\]

\[
\rightarrow \ \bullet, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while } x s
\]

\[
\rightarrow \ \bullet, x \mapsto 3; y := 1; \textbf{while } x s
\]

\[
\rightarrow^2 \ \bullet, x \mapsto 3, y \mapsto 1; \textbf{while } x s
\]

\[
\rightarrow \ \bullet, x \mapsto 3, y \mapsto 1; \textbf{if } x (s; \textbf{while } x s) \textbf{ skip}
\]

\[
\rightarrow \ \bullet, x \mapsto 3, y \mapsto 1; y := y \ast x; x := x - 1; \textbf{while } x s
\]

Continued...

\[
\rightarrow^2 \ \bullet, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x-1; \textbf{while } x s
\]

\[
\rightarrow^2 \ \bullet, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \textbf{while } x s
\]

\[
\rightarrow \ \ldots, y \mapsto 3, x \mapsto 2; \textbf{if } x (s; \textbf{while } x s) \textbf{ skip}
\]
Where we are
Defined $H; e \Downarrow c$ and $H; s \rightarrow H'; s'$ and extended the latter
to give s a meaning
▶ The way we did statements is "small-step operational semantics"
So now you have seen both
Definition by interpretation: program means what an interpreter
(written in a metalanguage) says it means
Interpreter represents a (very) abstract machine that runs code
Large-step does not distinguish errors and divergence
But we defined IMP to have no errors
▶ The way we did expressions is "large-step operational semantics"
Example: Our last program terminates with x holding 0
Example: Our last program terminates with x holding 0
We can prove a property of a terminating program by "running", it
Establishing Properties
We can prove a property of a terminating program by 'running', it

...
Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with \(x \) holding 0.

We can prove a program diverges, i.e., for all \(H \) and \(n \),
\[\cdot; s \rightarrow^n H ; \text{skip} \]
cannot be derived.

Example: \textbf{while 1 skip}

By induction on \(n \), but requires a \textit{stronger induction hypothesis}.

More General Proofs

We can prove properties of executing all programs (satisfying another property).

Example: If \(H \) and \(s \) have no negative constants and
\[H ; s \rightarrow^* H' ; s' \], then \(H' \) and \(s' \) have no negative constants.

Example: If for all \(H \), we know \(s_1 \) and \(s_2 \) terminate, then for all \(H \), we know \(H;(s_1; s_2) \) terminates.