Finally, some formal PL content

For our first formal language, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

“A program is a statement s, which is defined as follows”

$$
 s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s
$$

$$
 e ::= c \mid x \mid e + e \mid e \ast e
$$

$(c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\})$

$(x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})$

Syntax Definition

- **Blue** is metanotation: ::= for “can be a” and | for “or”
- **Metavariables** represent “anything in the syntax class”
- By abstract syntax, we mean that this defines a set of trees
 - Node has some label for “which alternative”
 - Children are more abstract syntax (subtrees) from the appropriate syntax class

Examples

- $s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s$
- $e ::= c \mid x \mid e + e \mid e \ast e$

$(c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\})$

$(x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})$
Comparison to ML

```plaintext
type exp = Const of int | Var of string
    | Add of exp * exp | Mult of exp * exp

let e = Var "x", Skip, Seq(Assign("y", Const 42), Assign("x", Var "y"));
let s = if e then Skip else Seq(Assign("y", Const 42), Assign("x", Var "y"));
```

We are used to writing programs in **concrete syntax**, i.e., strings.

That can be **ambiguous**: `if x skip y := 42 ; x := y`

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation.

Trees are our “truth” with strings as a “convenient notation”

If `x skip (y := 42 ; x := y)` versus `(if x skip y := 42) ; x := y`

Last word on concrete syntax

Converting a string into a tree is **parsing**

Creating concrete syntax such that parsing is unambiguous is one challenge of **grammar design**

- Always trivial if you require enough parentheses or keywords
 - Extreme case: LISP, 1960s; Scheme, 1970s
 - Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

- Using strings only as a convenient shorthand and asking if it's ever unclear what tree we mean

Inductive definition

```
s ::= skip | x := e | s ; s | if e s s | while e s
e ::= c | x | e + e | e * e
```

This grammar is a finite description of an infinite set of trees.

The apparent self-reference is not a problem, provided the definition uses well-founded induction

- Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

- Let \(E_0 = \emptyset \)
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union "expressions of the form \(c, x, e_1 + e_2, \) or \(e_1 * e_2 \) where \(e_1, e_2 \in E_{i-1} \)"
- Let \(E = \bigcup_{i \geq 0} E_i \)

The set \(E \) is what we mean by our compact metanotation.
Inductive definition

\[
\begin{align*}
S & ::= \text{skip} \mid x := e \mid S ; S \mid \text{if } e \text{ s s} \mid \text{while } e \text{ s} \\
E & ::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

- Let \(E_0 = \emptyset \).
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e_1 + e_2, \) or \(e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \)’.
- Let \(E = \bigcup_{i \geq 0} E_i \).

The set \(E \) is what we mean by our compact metanotation.

To get it: What set is \(E_1 \)? \(E_2 \)?
Could explain statements the same way: What is \(S_1 \)? \(S_2 \)? \(S \)?

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

Our First Theorem

There exist expressions with three constants.

Pedantic Proof: Consider \(e = 1 + (2 + 3) \). Showing \(e \in E_3 \) suffices because \(E_3 \subseteq E \). Showing \(2 + 3 \in E_2 \) and \(1 \in E_2 \) suffices...

PL-style proof: Consider \(e = 1 + (2 + 3) \) and definition of \(E \).

Theorem 2: All expressions have at least one constant or variable.

Pedantic proof: By induction on \(i \), for all \(e \in E_i \), \(e \) has \(\geq 1 \) constant or variable.
- Base: \(i = 0 \) implies \(E_i = \emptyset \)
- Inductive: \(i > 0 \). Consider arbitrary \(e \in E_i \) by cases:
 - \(e \in E_{i-1} \ldots \)
 - \(e = c \ldots \)
 - \(e = x \ldots \)
 - \(e = e_1 + e_2 \) where \(e_1, e_2 \in E_{i-1} \ldots \)
 - \(e = e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \ldots \)

Our Second Theorem

All expressions have at least one constant or variable.
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By *structural induction* on (rules for forming an expression) \(e \). Cases:

- \(c \) . . .
- \(x \) . . .
- \(e_1 + e_2 \) . . .
- \(e_1 \ast e_2 \) . . .

Structural induction invokes the induction hypothesis on *smaller* terms. It is equivalent to the pedantic proof, and more convenient in PL.