CSE-505: Programming Languages

Lecture 17 — Recursive Types

Zach Tatlock
2015
Where are we

- System F gave us type abstraction
 - code reuse
 - strong abstractions
 - different from real languages (like ML), but the right foundation

- This lecture: Recursive Types (different use of type variables)
 - For building unbounded data structures
 - Turing-completeness without a fix primitive

- Future lecture (?): Existential types (dual to universal types)
 - First-class abstract types
 - Closely related to closures and objects

- Future lecture (?): Type-and-effect systems
Recursive Types

We could add list types (list(\(\tau\))) and primitives ([], ::, match), but we want user-defined recursive types

Intuition:

\[
\text{type intlist} = \text{Empty} \mid \text{Cons int} \ast \text{intlist}
\]

Which is roughly:

\[
\text{type intlist} = \text{unit} + (\text{int} \ast \text{intlist})
\]

- Seems like a named type is unavoidable
 - But that’s what we thought with let rec and we used fix

- Analogously to fix \(\lambda x. e\), we’ll introduce \(\mu \alpha. \tau\)
 - Each \(\alpha\) “stands for” entire \(\mu \alpha. \tau\)
Mighty μ

In τ, type variable α stands for $\mu\alpha.\tau$, bound by μ

Examples (of many possible encodings):
- int list (finite or infinite): $\mu\alpha.\text{unit} + (\text{int} * \alpha)$
- int list (infinite “stream”): $\mu\alpha.\text{int} * \alpha$
 - Need laziness (thunking) or mutation to build such a thing
 - Under CBV, can build values of type $\mu\alpha.\text{unit} \rightarrow (\text{int} * \alpha)$
- int list list: $\mu\alpha.\text{unit} + ((\mu\beta.\text{unit} + (\text{int} * \beta)) * \alpha)$

Examples where type variables appear multiple times:
- int tree (data at nodes): $\mu\alpha.\text{unit} + (\text{int} * \alpha * \alpha)$
- int tree (data at leaves): $\mu\alpha.\text{int} + (\alpha * \alpha)$
Using μ types

How do we build and use int lists ($\mu\alpha.\text{unit} + (\text{int} \ast \alpha)$)?

We would like:

▶ empty list = $A()$

Has type: $\mu\alpha.\text{unit} + (\text{int} \ast \alpha)$

▶ cons = $\lambda x : \text{int}. \lambda y : (\mu\alpha.\text{unit} + (\text{int} \ast \alpha))$. $B((x,y))$

Has type: $\text{int} \rightarrow (\mu\alpha.\text{unit} + (\text{int} \ast \alpha)) \rightarrow (\mu\alpha.\text{unit} + (\text{int} \ast \alpha))$

▶ head = $\lambda x : (\mu\alpha.\text{unit} + (\text{int} \ast \alpha))$. match x with $A.A()$ | $B.y$. $B(y.1)$

Has type: $(\mu\alpha.\text{unit} + (\text{int} \ast \alpha)) \rightarrow (\text{unit} + \mu\alpha.\text{unit} + (\text{int} \ast \alpha))$

▶ tail = $\lambda x : (\mu\alpha.\text{unit} + (\text{int} \ast \alpha))$. match x with $A.A()$ | $B.y$. $B(y.2)$

Has type: $(\mu\alpha.\text{unit} + (\text{int} \ast \alpha)) \rightarrow (\text{unit} + \mu\alpha.\text{unit} + (\text{int} \ast \alpha))$

But our typing rules allow none of this (yet)
Using \(\mu \) types

How do we build and use int lists \((\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \)?

We would like:

- empty list = \(A(()) \)
 Has type: \(\mu \alpha. \text{unit} + (\text{int} \times \alpha) \)
Using \(\mu \) types

How do we build and use int lists \((\mu\alpha.\text{unit} + (\text{int} \times \alpha))\)?

We would like:

- empty list \(= A(())) \)
 Has type: \(\mu\alpha.\text{unit} + (\text{int} \times \alpha) \)
- \(\text{cons} = \lambda x:\text{int.} \lambda y:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). B((x, y)) \)
 Has type:
 \[
 \text{int} \to (\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \to (\mu\alpha.\text{unit} + (\text{int} \times \alpha))
 \]
Using \(\mu \) types

How do we build and use int lists \((\mu \alpha.\text{unit} + (\text{int} \ast \alpha))\)?

We would like:

- empty list = \(A((())) \)
 Has type: \(\mu \alpha.\text{unit} + (\text{int} \ast \alpha) \)

- cons = \(\lambda x:\text{int}. \lambda y: (\mu \alpha.\text{unit} + (\text{int} \ast \alpha)). B((x, y)) \)
 Has type:
 \[
 \text{int} \rightarrow (\mu \alpha.\text{unit} + (\text{int} \ast \alpha)) \rightarrow (\mu \alpha.\text{unit} + (\text{int} \ast \alpha))
 \]

- head =
 \[
 \lambda x: (\mu \alpha.\text{unit} + (\text{int} \ast \alpha)). \text{match } x \text{ with } A_. \ A((())) | B y. B(y.1)
 \]
 Has type: \((\mu \alpha.\text{unit} + (\text{int} \ast \alpha)) \rightarrow (\text{unit} + \text{int}) \)
Using μ types

How do we build and use int lists ($\mu\alpha.\text{unit} + (\text{int} \times \alpha)$)?

We would like:

- empty list = $A(())$
 Has type: $\mu\alpha.\text{unit} + (\text{int} \times \alpha)$
- cons = $\lambda x:\text{int}. \lambda y:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). B((x, y))$
 Has type:
 \[
 \text{int} \rightarrow (\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \rightarrow (\mu\alpha.\text{unit} + (\text{int} \times \alpha))
 \]
- head =
 $\lambda x:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). \text{match } x\text{ with } A_ . A(())| B y. B(y.1)$
 Has type: $(\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \rightarrow (\text{unit} + \text{int})$
- tail =
 $\lambda x:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). \text{match } x\text{ with } A_ . A(())| B y. B(y.2)$
 Has type:
 $(\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \rightarrow (\text{unit} + \mu\alpha.\text{unit} + (\text{int} \times \alpha))$
Using μ types

How do we build and use int lists ($\mu\alpha.\text{unit} + (\text{int} \times \alpha)$)?

We would like:

- empty list = $A(())$
 Has type: $\mu\alpha.\text{unit} + (\text{int} \times \alpha)$

- cons = $\lambda x:\text{int}. \lambda y:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). B((x, y))$
 Has type:
 $\text{int} \to (\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \to (\mu\alpha.\text{unit} + (\text{int} \times \alpha))$

- head =
 $\lambda x:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). \text{match } x \text{ with } A_. A(()) \mid B y. B(y.1)$
 Has type: $(\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \to (\text{unit} + \text{int})$

- tail =
 $\lambda x:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). \text{match } x \text{ with } A_. A(()) \mid B y. B(y.2)$
 Has type:
 $(\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \to (\text{unit} + \mu\alpha.\text{unit} + (\text{int} \times \alpha))$

But our typing rules allow none of this (yet)
Using \(\mu \) types (continued)

For empty list \(= A(()) \), one typing rule applies:

\[
\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2
\]

\[
\Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2
\]

So we could show

\[
\Delta; \Gamma \vdash A(() : \text{unit} + (\text{int} \ast (\mu \alpha.\text{unit} + (\text{int} \ast \alpha))))
\]

(since \(FTV(\text{int} \ast \mu \alpha.\text{unit} + (\text{int} \ast \alpha)) = \emptyset \subseteq \Delta \))
Using μ types (continued)

For empty list $= A(())$, one typing rule applies:

$$\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2$$

So we could show

$$\Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2$$

But we want $\mu\alpha.\text{unit} + (\text{int} \times \alpha)$
Using μ types (continued)

For empty list $= A(())$, one typing rule applies:

$$
\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2
\frac{}{\Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2}
$$

So we could show

$$
\Delta; \Gamma \vdash A(()) : \text{unit} + (\text{int} \times (\mu \alpha. \text{unit} + (\text{int} \times \alpha)))
$$

(since $\text{FTV}(\text{int} \times (\mu \alpha. \text{unit} + (\text{int} \times \alpha))) = \emptyset \subseteq \Delta$)

But we want $\mu \alpha. \text{unit} + (\text{int} \times \alpha)$

Notice: $\text{unit} + (\text{int} \times (\mu \alpha. \text{unit} + (\text{int} \times \alpha)))$ is

$(\text{unit} + (\text{int} \times \alpha))[\text{[(\mu \alpha. \text{unit} + (\text{int} \times \alpha))]/\alpha}]$
Using μ types (continued)

For empty list $= \text{A}(())$, one typing rule applies:

$$\frac{\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2}{\Delta; \Gamma \vdash \text{A}(e) : \tau_1 + \tau_2}$$

So we could show

$$\Delta; \Gamma \vdash \text{A}(()) : \text{unit} + (\text{int} \ast (\mu\alpha.\text{unit} + (\text{int} \ast \alpha)))$$

(since $FTV(\text{int} \ast \mu\alpha.\text{unit} + (\text{int} \ast \alpha)) = \emptyset \subseteq \Delta$)

But we want $\mu\alpha.\text{unit} + (\text{int} \ast \alpha)$

Notice: $\text{unit} + (\text{int} \ast (\mu\alpha.\text{unit} + (\text{int} \ast \alpha)))$ is

$$(\text{unit} + (\text{int} \ast \alpha))[((\mu\alpha.\text{unit} + (\text{int} \ast \alpha))/\alpha]$$

The key: Subsumption — recursive types are equal to their “unrolling”
Return of subtyping

Can use *subsumption* and these subtyping rules:

\[
\begin{align*}
\text{ROLL} & \quad \tau[(\mu\alpha.\tau)/\alpha] \leq \mu\alpha.\tau \\
\text{UNROLL} & \quad \mu\alpha.\tau \leq \tau[(\mu\alpha.\tau)/\alpha]
\end{align*}
\]

Subtyping can “roll” or “unroll” a recursive type

Can now give empty-list, cons, and head the types we want:
Constructors use roll, destructors use unroll

Notice how little we did: One new form of type \(\mu\alpha.\tau\) and two new subtyping rules

(Skipping: Depth subtyping on recursive types is very interesting)
Metatheory

Despite additions being minimal, must reconsider how recursive types change STLC and System F:

▶ Erasure (no run-time effect): unchanged

▶ Termination: changed!
 ▶ \((\lambda x:\mu \alpha. \alpha \rightarrow \alpha. \ x \ x)(\lambda x:\mu \alpha. \alpha \rightarrow \alpha. \ x \ x)\)
 ▶ In fact, we’re now Turing-complete without fix (actually, can type-check every closed \(\lambda\) term)

▶ Safety: still safe, but Canonical Forms harder

▶ Inference: Shockingly efficient for “STLC plus \(\mu\)”
 (A great contribution of PL theory with applications in OO and XML-processing languages)
Syntax-directed \(\mu\) types

Recursive types via subsumption “seems magical”

Instead, we can make programmers tell the type-checker where/how to roll and unroll

“Iso-recursive” types: remove subtyping and add expressions:

\[
\begin{align*}
\tau & ::= \ldots | \mu\alpha.\tau \\
 e & ::= \ldots | \text{roll}_{\mu\alpha.\tau} e | \text{unroll} e \\
 v & ::= \ldots | \text{roll}_{\mu\alpha.\tau} v \\
\end{align*}
\]

\[
\begin{align*}
 e & \rightarrow e' \\
 \text{roll}_{\mu\alpha.\tau} e & \rightarrow \text{roll}_{\mu\alpha.\tau} e' \\
\text{unroll} e & \rightarrow \text{unroll} e' \\
\text{unroll} (\text{roll}_{\mu\alpha.\tau} v) & \rightarrow v \\
\end{align*}
\]

\[
\begin{align*}
\Delta; \Gamma \vdash e : \tau[(\mu\alpha.\tau)/\alpha] & \quad \Delta; \Gamma \vdash e : \mu\alpha.\tau \\
\Delta; \Gamma \vdash \text{roll}_{\mu\alpha.\tau} e : \mu\alpha.\tau & \quad \Delta; \Gamma \vdash \text{unroll} e : \tau[(\mu\alpha.\tau)/\alpha]
\end{align*}
\]
Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary

Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

- Implicit typing can be impossible, difficult, or confusing
- Explicit coercions can be annoying and clutter language with no-ops
- Most languages do some of each

Anything is decidable if you make the code producer give the implementation enough “hints” about the “proof”
ML datatypes revealed

How is $\mu \alpha.\tau$ related to

\[t = \text{Foo of int} \mid \text{Bar of int } \times t \]

Constructor use is a “sum-injection” followed by an *implicit roll*

- So $\text{Foo } e$ is really $\text{roll}_t \text{Foo}(e)$
- That is, $\text{Foo } e$ has type t (the rolled type)

A pattern-match has an *implicit unroll*

- So match e with... is really match $\text{unroll } e$ with...

This “trick” works because different recursive types use different tags – so the type-checker knows *which* type to roll to