CSE-505: Programming Languages

Lecture 17 — Recursive Types

Zach Tatlock
2015

Where are we

- System F gave us type abstraction
 - code reuse
 - strong abstractions
 - different from real languages (like ML), but the right foundation

- This lecture: Recursive Types (different use of type variables)
 - For building unbounded data structures
 - Turing-completeness without a fix primitive

- Future lecture (?): Existential types (dual to universal types)
 - First-class abstract types
 - Closely related to closures and objects

- Future lecture (?): Type-and-effect systems

Recursive Types

We could add list types \(\text{list}(\tau)\) and primitives \([\], ::, \text{match}\), but we want user-defined recursive types

Intuition:
\[
\text{type intlist} = \text{Empty} \mid \text{Cons int} \ast \text{intlist}
\]
Which is roughly:
\[
\text{type intlist} = \text{unit} + (\text{int} \ast \text{intlist})
\]

- Seems like a named type is unavoidable
 - But that’s what we thought with let rec and we used fix

- Analogously to \text{fix} \(\lambda x. \ e\), we’ll introduce \(\mu \alpha. \tau\)
 - Each \(\alpha\) "stands for" entire \(\mu \alpha. \tau\)

Mighty \(\mu\)

In \(\tau\), type variable \(\alpha\) stands for \(\mu \alpha. \tau\), bound by \(\mu\)

Examples (of many possible encodings):
- int list (finite or infinite): \(\mu \alpha. \text{unit} + (\text{int} \ast \alpha)\)
- int list (infinite "stream"): \(\mu \alpha. \text{int} \ast \alpha\)
 - Need laziness (thunking) or mutation to build such a thing
 - Under CBV, can build values of type \(\mu \alpha. \text{unit} \rightarrow (\text{int} \ast \alpha)\)
- int list list: \(\mu \alpha. \text{unit} + ((\mu \beta. \text{unit} + (\text{int} \ast \beta)) \ast \alpha)\)

Examples where type variables appear multiple times:
- int tree (data at nodes): \(\mu \alpha. \text{unit} + (\text{int} \ast \alpha \ast \alpha)\)
- int tree (data at leaves): \(\mu \alpha. \text{int} + (\alpha \ast \alpha)\)
Using μ types

How do we build and use int lists ($\mu \alpha.\text{unit} + (\text{int} \times \alpha)$)?

We would like:
- empty list = $\text{A}(())$
 Has type: $\mu \alpha.\text{unit} + (\text{int} \times \alpha)$

But our typing rules allow none of this (yet)

Zach Tatlock

Using μ types

How do we build and use int lists ($\mu \alpha.\text{unit} + (\text{int} \times \alpha)$)?

We would like:
- empty list = $\text{A}(())$
 Has type: $\mu \alpha.\text{unit} + (\text{int} \times \alpha)$

- cons = $\lambda x: \text{int}. \lambda y: (\mu \alpha.\text{unit} + (\text{int} \times \alpha)). \text{B}((x, y))$
 Has type:
 $\text{int} \rightarrow (\mu \alpha.\text{unit} + (\text{int} \times \alpha)) \rightarrow (\mu \alpha.\text{unit} + (\text{int} \times \alpha))$

- head = $\lambda x: (\mu \alpha.\text{unit} + (\text{int} \times \alpha)). \text{match} x \text{ with } \text{A}. \text{A}(() | \text{B}(y, 1)$
 Has type: $(\mu \alpha.\text{unit} + (\text{int} \times \alpha)) \rightarrow (\text{unit} + \text{int})$
Using \(\mu \) types

How do we build and use int lists \((\mu\alpha.\text{unit} + (\text{int} \times \alpha))\)?

We would like:

- empty list = \(A(() \))
 - Has type: \(\mu\alpha.\text{unit} + (\text{int} \times \alpha) \)
- cons = \(\lambda x:\text{int}. \lambda y:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). B((x, y)) \)
 - Has type:
 \[
 \text{int} \rightarrow (\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \rightarrow (\mu\alpha.\text{unit} + (\text{int} \times \alpha))
 \]
- head =
 \[
 \lambda x:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). \text{match } x \text{ with } A. \ A() | B. B(y.1)
 \]
 - Has type:
 \[
 (\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \rightarrow (\text{unit} + \text{int})
 \]
- tail =
 \[
 \lambda x:(\mu\alpha.\text{unit} + (\text{int} \times \alpha)). \text{match } x \text{ with } A. \ A() | B. B(y.2)
 \]
 - Has type:
 \[
 (\mu\alpha.\text{unit} + (\text{int} \times \alpha)) \rightarrow (\text{unit} + \mu\alpha.\text{unit} + (\text{int} \times \alpha))
 \]

But our typing rules allow none of this (yet)

Using \(\mu \) types (continued)

For empty list = \(A(() \)), one typing rule applies:

\[
\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2 \quad \Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2
\]

So we could show

\[
\Delta; \Gamma \vdash A(() : \text{unit} + (\text{int} \times (\mu\alpha.\text{unit} + (\text{int} \times \alpha))))
\]

(since \(FTV(int \times \mu\alpha.\text{unit} + (\text{int} \times \alpha)) = \emptyset \subseteq \Delta \))

Using \(\mu \) types (continued)

For empty list = \(A(() \)), one typing rule applies:

\[
\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2 \quad \Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2
\]

So we could show

\[
\Delta; \Gamma \vdash A(() : \text{unit} + (\text{int} \times (\mu\alpha.\text{unit} + (\text{int} \times \alpha))))
\]

(since \(FTV(int \times \mu\alpha.\text{unit} + (\text{int} \times \alpha)) = \emptyset \subseteq \Delta \))

But we want \(\mu\alpha.\text{unit} + (\text{int} \times \alpha) \)
Using μ types (continued)

For empty list $= A(()), one typing rule applies:

$$\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2$$

$$\Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2$$

So we could show

$$\Delta; \Gamma \vdash A(() : \text{unit} + (\text{int} \ast (\mu \alpha. \text{unit} + (\text{int} \ast \alpha))))$$

(since $FTV(\text{int} \ast (\mu \alpha. \text{unit} + (\text{int} \ast \alpha))) = \emptyset \subseteq \Delta$)

But we want $\mu \alpha. \text{unit} + (\text{int} \ast \alpha)$

Notice: $\text{unit} + (\text{int} \ast (\mu \alpha. \text{unit} + (\text{int} \ast \alpha)))$ is

$(\text{unit} + (\text{int} \ast \alpha))(\mu \alpha. \text{unit} + (\text{int} \ast \alpha))/\alpha$

The key: Subsumption — recursive types are equal to their “unrolling”

Return of subtyping

Can use subsumption and these subtyping rules:

$$\begin{align*}
\text{ROLL} & \quad \text{UNROLL} \\
\tau[(\mu \alpha. \tau)/\alpha] \leq \mu \alpha. \tau & \quad \mu \alpha. \tau \leq \tau[(\mu \alpha. \tau)/\alpha]
\end{align*}$$

Subtyping can “roll” or “unroll” a recursive type

Can now give empty-list, cons, and head the types we want:
Constructors use roll, destructors use unroll

Notice how little we did: One new form of type $(\mu \alpha. \tau)$ and two new subtyping rules

(Skipping: Depth subtyping on recursive types is very interesting)

Metatheory

Despite additions being minimal, must reconsider how recursive types change STLC and System F:

- Erasure (no run-time effect): unchanged

- Termination: changed!
 - $(\lambda x: \mu \alpha. \alpha \rightarrow \alpha. \ x \ x)(\lambda x: \mu \alpha. \alpha \rightarrow \alpha. \ x \ x)$
 - In fact, we're now Turing-complete without fix (actually, can type-check every closed λ term)

- Safety: still safe, but Canonical Forms harder

- Inference: Shockingly efficient for “STLC plus μ”
 (A great contribution of PL theory with applications in OO and XML-processing languages)
Syntax-directed μ types

Recursive types via subsumption “seems magical”

Instead, we can make programmers tell the type-checker where/how to roll and unroll

“Iso-recursive” types: remove subtyping and add expressions:

$$
\begin{align*}
\tau & ::= \ldots | \mu\alpha.\tau \\
e & ::= \ldots | \text{roll}_{\mu\alpha.\tau} e \mid \text{unroll} e \\
v & ::= \ldots | \text{roll}_{\mu\alpha.\tau} v
\end{align*}
$$

$$
\begin{array}{c}
\frac{e \rightarrow e'}{\text{roll}_{\mu\alpha.\tau} e \rightarrow \text{roll}_{\mu\alpha.\tau} e'} \\
\frac{e \rightarrow e'}{\text{unroll} e \rightarrow \text{unroll} e'}
\end{array}
$$

$$
\frac{\Delta; \Gamma \vdash e : \tau[(\mu\alpha.\tau)/\alpha]}{\Delta; \Gamma \vdash \text{unroll} \ (\text{roll}_{\mu\alpha.\tau} v) \rightarrow v}
$$

ML datatypes revealed

How is $\mu\alpha.\tau$ related to
type $t = \text{Foo of int | Bar of int * t}$

Constructor use is a “sum-injection” followed by an implicit roll

- So Foo e is really $\text{roll}_t \ 	ext{Foo}(e)$
- That is, Foo e has type t (the rolled type)

A pattern-match has an implicit unroll

- So match e with... is really match $\text{unroll} e$ with...

This “trick” works because different recursive types use different tags – so the type-checker knows which type to roll to