Where are we

Done:
- Formal definition of evaluation contexts and first-class continuations
- Continuation-passing style as a programming idiom
- The CPS transform

Now:
- Implement an efficient lambda-calculus interpreter using little more than malloc and a single while-loop
 - Explicit evaluation contexts (i.e., continuations) is essential
 - Key novelty is maintaining the current context incrementally
 - `letcc` and `throw` can be $O(1)$ operations (homework problem)
See the code

See lec14code.ml for four interpreters where each is:

- More efficient than the previous one and relies on less from the meta-language
- Close enough to the previous one that equivalence among them is tractable to prove

The interpreters:

1. Plain-old small-step with substitution
2. Evaluation contexts, re-decomposing at each step
3. Incremental decomposition, made efficient by representing evaluation contexts (i.e., continuations) as a linked list with “shallow end” of the stack at the beginning of the list
4. Replacing substitution with environments

The last interpreter is trivial to port to assembly or C
Example

Small-step (first interpreter):

Decomposition (second interpreter):
Example

Decomposition (second interpreter):

\[
E = \lambda a. a \\
\lambda b. b \\
\lambda c. c
\]

\[
E = \lambda a. a \\
\lambda c. c \\
\lambda d. d \\
\lambda e. e
\]

Decomposition rewritten with linked list (hole implicit at \textit{front}):

\[
c = L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: []
\]

\[
e = A(\lambda b. b, \lambda c. c)
\]

\[
c = R(\lambda c. c) :: R(\lambda a. a) :: []
\]

\[
e = A(\lambda d. d, \lambda e. e)
\]
Example

Decomposition rewritten with linked list (hole implicit at \textit{front}):

\[
\begin{align*}
 c &= L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \\
 e &= A(\lambda b. b, \lambda c. c)
\end{align*}
\]

\[
\begin{align*}
 c &= R(\lambda c. c) :: R(\lambda a. a) :: [] \\
 e &= A(\lambda d. d, \lambda e. e)
\end{align*}
\]

Some loop iterations of third interpreter:

\[
\begin{align*}
 e &= A(\lambda b. b, \lambda c. c) \\
 e &= \lambda b. b \\
 e &= \lambda c. c \\
 e &= \lambda c. c \\
 e &= A(\lambda d. d, \lambda e. e)
\end{align*}
\]

\[
\begin{align*}
 c &= L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \\
 c &= L(\lambda c. c) :: L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \\
 c &= R(\lambda b. b) :: L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \\
 c &= L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \\
 c &= R(\lambda c. c) :: R(\lambda a. a) :: []
\end{align*}
\]

Fourth interpreter: replace substitution with environment/closures
The end result

The last interpreter needs just:

▶ A loop
▶ Lists for contexts and environments
▶ Tag tests

Moreover:

▶ Function calls execute in $O(1)$ time
▶ Variable look-ups don’t, but that’s fixable
 ▶ (e.g., de Bruijn indices and arrays for environments)
▶ Other operations, including pairs, conditionals, letcc, and throw also all work in $O(1)$ time
 ▶ Need new kinds of contexts and values
 ▶ Left as a homework exercise as a way to understand the code

Making evaluation contexts explicit data structures was key