Review

\[
\begin{align*}
 e ::= & \lambda x. e \mid x \mid e \ e \mid c \\
 v ::= & \lambda x. e \\
 \tau ::= & \text{int} \mid \tau \rightarrow \tau \\
 \Gamma ::= & \cdot \mid \Gamma, x : \tau
\end{align*}
\]

\[
\begin{align*}
(\lambda x. e) \ v & \rightarrow e[v/x] \\
 e_1 \ e_2 & \rightarrow e_1' \ e_2' \\
v \ e_2 & \rightarrow v \ e_2'
\end{align*}
\]

\[e[e'/x]: \text{capture-avoiding substitution of } e' \text{ for free } x \text{ in } e\]

\[
\begin{align*}
\Gamma \vdash c : \text{int} \\
\Gamma \vdash x : \Gamma(x) \\
\Gamma, x : \tau_1 \vdash e : \tau_2
\end{align*}
\]

\[
\begin{align*}
\Gamma, x : \tau_1 \vdash e_1 : \tau_2 \\
\Gamma, x : \tau_1 \vdash e_2 : \tau_2
\end{align*}
\]

\[
\Gamma \vdash e_1 \ e_2 : \tau_1
\]

Preservation: If \(\cdot \vdash e : \tau\) and \(e \rightarrow e'\), then \(\cdot \vdash e' : \tau\).

Progress: If \(\cdot \vdash e : \tau\), then \(e\) is a value or \(\exists e'\) such that \(e \rightarrow e'\).

Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a principled methodology thanks to a proper education

- Extend the syntax
- Extend the operational semantics
 - Derived forms (syntactic sugar), or
 - Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

Let bindings (CBV)

\[
e ::= \ldots \mid \text{let } x = e_1 \text{ in } e_2
\]

\[
\begin{align*}
\Gamma & \vdash e_1 : \tau' \\
\Gamma, x : \tau' & \vdash e_2 : \tau
\end{align*}
\]

\[
\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau
\]

(Also need to extend definition of substitution...)

Progress: If \(e\) is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange
Derived forms

let seems just like λ, so can make it a derived form
- let \(x = e_1 \) in \(e_2 \) "a macro" / "desugars to" \((\lambda x. e_2) e_1\)
- A "derived form"

(Harder if \(\lambda \) needs explicit type)

Or just define the semantics to replace let with λ:

\[
\text{let } x = e_1 \text{ in } e_2 \rightarrow (\lambda x. e_2) e_1
\]

These 3 semantics are different in the state-sequence sense
\((e_1 \rightarrow e_2 \rightarrow \ldots \rightarrow e_n)\)
- But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and \(\lambda \) differently (later topic)
Note: Don’t desugar early if it hurts error messages!

Booleans and Conditionals

\[
e ::= \ldots | \text{true} | \text{false} | \text{if } e_1 \ e_2 \ e_3
\]

\[
v ::= \ldots | \text{true} | \text{false}
\]

\[
\tau ::= \ldots | \text{bool}
\]

\[
\frac{e_1 \rightarrow e_1'}{e_1 \rightarrow (e_1, e_2) \rightarrow (e_1', e_2)}
\]

\[
\frac{e_2 \rightarrow e_2'}{(v_1, e_2) \rightarrow (v_1, e_2')}
\]

\[
\frac{e \rightarrow e'}{e.1 \rightarrow (e', 1)}
\]

\[
\frac{e \rightarrow e'}{e.2 \rightarrow (v_2).2 \rightarrow v_2}
\]

Small-step can be a pain
- Large-step needs only 3 rules
- Will learn more concise notation later (evaluation contexts)

Pairs (CBV, left-right)

\[
e ::= \ldots | (e, e) | e.1 | e.2
\]

\[
v ::= \ldots | (v, v)
\]

\[
\tau ::= \ldots | \tau \ast \tau
\]

\[
\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2}
\]

\[
\frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash e.1 : \tau_1}
\]

\[
\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash e.2 : \tau_2}
\]

Canonical Forms: If \(\cdot \vdash v : \tau_1 \ast \tau_2 \), then \(v \) has the form \((v_1, v_2)\)

Progress: New cases using Canonical Forms are \(v.1 \) and \(v.2 \)

Preservation: For primitive reductions, inversion gives the result directly
Records

Records are like \(n \)-ary tuples except with named fields

- Field names are not variables; they do not \(\alpha \)-convert

\[
\begin{align*}
 e & ::= \ldots | \{ l_1 = e_1; \ldots ; l_n = e_n \} \mid e.l \\
 v & ::= \ldots | \{ l_1 = v_1; \ldots ; l_n = v_n \} \\
 \tau & ::= \ldots | \{ l_1 : \tau_1; \ldots ; l_n : \tau_n \}
\end{align*}
\]

\[
\frac{e_i \rightarrow e'_i}{\{ l_1 = v_1, \ldots , l_n = v_n \}. l_i \rightarrow v_i}
\]

\[
\frac{\Gamma \vdash e_1 : \tau_1, \ldots , \Gamma \vdash e_n : \tau_n \text{ labels distinct}}{\Gamma \vdash \{ l_1 = e_1, \ldots , l_n = e_n \} : \{ l_1 : \tau_1, \ldots , l_n : \tau_n \}}
\]

\[
\frac{\Gamma \vdash e : \{ l_1 : \tau_1, \ldots , l_n : \tau_n \} \quad 1 \leq i \leq n}{\Gamma \vdash e.l_i : \tau_i}
\]

Records continued

Should we be allowed to reorder fields?

- \(\cdot \vdash \{ l_1 = 42 ; l_2 = true \} : \{ l_2 : bool ; l_1 : int \} \) ??
- Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

- Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping

Sums

What about ML-style datatypes:

\[
\text{type } t = A \mid B \text{ of } \text{int} \mid C \text{ of } \text{int} \times t
\]

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., \(\text{type } '{a \text{ mylist} = \ldots} \)

4. Named types

For now, just model (1) with (anonymous) sum types

- (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss informally

\[
\begin{align*}
 e & ::= \ldots | A(e) \mid B(e) \mid \text{match } e \text{ with } A.x. e \mid B.x. e \\
 v & ::= \ldots | A(v) \mid B(v) \\
 \tau & ::= \ldots | \tau_1 + \tau_2
\end{align*}
\]

- Only two constructors: \(A \) and \(B \)

- All values of any sum type built from these constructors

- So \(A(e) \) can have any sum type allowed by \(e \)'s type

- No need to declare sum types in advance

- Like functions, will “guess the type” in our rules
Sums operational semantics

\[
\begin{align*}
\text{match } A(v) \text{ with } A.x. e_1 & \mid B.y. e_2 \rightarrow e_1[v/x] \\
\text{match } B(v) \text{ with } A.x. e_1 & \mid B.y. e_2 \rightarrow e_2[v/y] \\
\end{align*}
\]

\[
\begin{align*}
e & \rightarrow e' \\
A(e) & \rightarrow A(e') \\
B(e) & \rightarrow B(e') \\
\end{align*}
\]

\[
\begin{align*}
\text{match } e \text{ with } A.x. e_1 & \mid B.y. e_2 \rightarrow \text{match } e' \text{ with } A.x. e_1 & \mid B.y. e_2
\end{align*}
\]

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)

What is going on

Feel free to think about tagged values in your head:

- A tagged value is a pair of:
 - A tag \(A \) or \(B \) (or 0 or 1 if you prefer)
 - The (underlying) value

- A match:
 - Checks the tag
 - Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

\[
\begin{align*}
\Gamma & \vdash e : \tau_1 \\
\Gamma & \vdash A(e) : \tau_1 + \tau_2 \\
\Gamma & \vdash B(e) : \tau_1 + \tau_2 \\
\Gamma & \vdash e : \tau_1 + \tau_2 \\
\Gamma, x: \tau_1 & \vdash e_1 : \tau \\
\Gamma, y: \tau_2 & \vdash e_2 : \tau \\
\Gamma & \vdash \text{match } e \text{ with } A.x. e_1 & \mid B.y. e_2 : \tau
\end{align*}
\]

Key ideas:

- For constructor-uses, “other side can be anything”
- For match, both sides need same type
 - Don’t know which branch will be taken, just like an if.
 - In fact, can drop explicit booleans and encode with sums:
 E.g., \(\text{bool} = \text{int} + \text{int} \), \(\text{true} = A(0) \), \(\text{false} = B(0) \)

Sums Type Safety

Canonical Forms: If \(\cdot \vdash v : \tau_1 + \tau_2 \), then there exists a \(v_1 \) such that either \(v \) is \(A(v_1) \) and \(\cdot \vdash v_1 : \tau_1 \) or \(v \) is \(B(v_1) \) and \(\cdot \vdash v_1 : \tau_2 \)

- Progress for \(\text{match } v \text{ with } A.x. e_1 & \mid B.y. e_2 \) follows, as usual, from Canonical Forms
- Preservation for \(\text{match } v \text{ with } A.x. e_1 & \mid B.y. e_2 \) follows from the type of the underlying value and the Substitution Lemma
- The Substitution Lemma has new “hard” cases because we have new binding occurrences
- But that’s all there is to it (plus lots of induction)
What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: “this or that not both”
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another

Sums in C

```plaintext
type t = A of t1 | B of t2 | C of t3
match e with A x -> ...
```

One way in C:

```plaintext
struct t {
  enum {A, B, C} tag;
  union {t1 a; t2 b; t3 c;} data;
};
... switch(e->tag){ case A: t1 x=e->data.a; ...
```

- No static checking that tag is obeyed
- As fat as the fattest variant (avoidable with casts)
- Mutation costs us again!

Sums in Java

```plaintext
type t = A of t1 | B of t2 | C of t3
match e with A x -> ...
```

One way in Java (t4 is the match-expression’s type):

```plaintext
abstract class t {
  abstract t4 m();
}
class A extends t {
  t1 x; t4 m();...
}
class B extends t {
  t2 x; t4 m();...
}
class C extends t {
  t3 x; t4 m();...
}...
```

- A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)

Pairs vs. Sums

- You need both in your language
 - With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
 - Example: replace `int + (int -> int)` with `int * (int * (int -> int))`

Pairs and sums are “logical duals” (more on that later)

- To make a \(\tau_1 \times \tau_2 \) you need a \(\tau_1 \) and a \(\tau_2 \)
- To make a \(\tau_1 + \tau_2 \) you need a \(\tau_1 \) or a \(\tau_2 \)
- Given a \(\tau_1 \times \tau_2 \), you can get a \(\tau_1 \) or a \(\tau_2 \) (or both; your “choice”)
- Given a \(\tau_1 + \tau_2 \), you must be prepared for either a \(\tau_1 \) or \(\tau_2 \) (the value’s “choice”)
Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types \(b_1, \ldots, b_n \) and primitives \(p_1 : \tau_1, \ldots, p_n : \tau_n \). Examples:

- \(\text{concat} : \text{string} \rightarrow \text{string} \rightarrow \text{string} \)
- \(\text{toInt} : \text{float} \rightarrow \text{int} \)
- “hello” : \(\text{string} \)

For each primitive, assume if applied to values of the right types it produces a value of the right type

Together the types and assumed steps tell us how to type-check and evaluate \(p_1 v_1 \ldots v_n \) where \(p_i \) is a primitive

We can prove soundness once and for all given the assumptions

Recursion

We won’t prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our lambda-calculus encoding won’t type-check, nor will any encoding of equal expressive power

- So instead add an explicit construct for recursion
- You might be thinking \(\text{let rec} \ f \ x = e \), but we will do something more concise and general but less intuitive

Using fix

To use fix like \(\text{let rec} \), just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:

\[
(fix \lambda f. \lambda n. \text{if } (n<1) 1 (n \star (f(n-1)))) 5
\]
Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

▶ Not shown: fix and tuples can also encode mutual recursion

Example:

(fix λf. λn. if (n<1) 1 (n * (f(n − 1)))) 5
→
(λn. if (n<1) 1 (n * ((fix λf. λn. if (n<1) 1 (n * (f(n − 1))))(n−1)))) 5

→
if (5<1) 1 (5 * ((fix λf. λn. if (n<1) 1 (n * (f(n − 1))))(5 − 1))

= 2

5 * ((fix λf. λn. if (n<1) 1 (n * (f(n − 1))))(5 − 1))

Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

▶ Not shown: fix and tuples can also encode mutual recursion

Example:

(fix λf. λn. if (n<1) 1 (n * (f(n − 1)))) 5
→
(λn. if (n<1) 1 (n * ((fix λf. λn. if (n<1) 1 (n * (f(n − 1))))(n−1)))) 5

→
if (5<1) 1 (5 * ((fix λf. λn. if (n<1) 1 (n * (f(n − 1))))(5 − 1))

= 2

5 * ((fix λf. λn. if (n<1) 1 (n * (f(n − 1))))(5 − 1))

→
...
Why called fix?
In math, a fix-point of a function g is an x such that $g(x) = x$
- This makes sense only if g has type $\tau \to \tau$ for some τ
- A particular g could have have 0, 1, 39, or infinity fix-points
- Examples for functions of type $\text{int} \to \text{int}$:
 - $\lambda x. x + 1$ has no fix-points
 - $\lambda x. x \ast 0$ has one fix-point
 - $\lambda x. \text{absolute}_\text{value}(x)$ has an infinite number of fix-points
 - $\lambda x. \text{if } (x < 10 \&\& x > 0) x$ 0 has 10 fix-points

Higher types
At higher types like $(\text{int} \to \text{int}) \to (\text{int} \to \text{int})$, the notion of fix-point is exactly the same (but harder to think about)
- For what inputs f of type $\text{int} \to \text{int}$ is $g(f) = f$

Examples:
- $\lambda f. \lambda x. (f x) + 1$ has no fix-points
- $\lambda f. \lambda x. (f x) \ast 0$ (or just $\lambda f. \lambda x. 0$) has 1 fix-point
 - The function that always returns 0
 - In math, there is exactly one such function (cf. equivalence)
- $\lambda f. \lambda x. \text{absolute}_\text{value}(f x)$ has an infinite number of fix-points: Any function that never returns a negative result

Back to factorial
Now, what are the fix-points of $\lambda f. \lambda x. \text{if } (x < 1) 1 (x \ast (f(x-1)))$?

It turns out there is exactly one (in math): the factorial function!
And $\text{fix } \lambda f. \lambda x. \text{if } (x < 1) 1 (x \ast (f(x-1)))$ behaves just like the factorial function
- That is, it behaves just like the fix-point of $\lambda f. \lambda x. \text{if } (x < 1) 1 (x \ast (f(x-1)))$
- In general, fix takes a function-taking-function and returns its fix-point

Typing fix
$$\Gamma \vdash e : \tau \to \tau$$
$$\Gamma \vdash \text{fix } e : \tau$$
Math explanation: If e is a function from τ to τ, then $\text{fix } e$, the fixed-point of e, is some τ with the fixed-point property
- So it’s something with type τ

Operational explanation: $\text{fix } \lambda x. e'$ becomes $e'[[\text{fix } \lambda x. e'/x]$
- The substitution means x and $\text{fix } \lambda x. e'$ need the same type
- The result means e' and $\text{fix } \lambda x. e'$ need the same type

Note: The τ in the typing rule is usually insantiated with a function type
- e.g., $\tau_1 \to \tau_2$, so e has type $(\tau_1 \to \tau_2) \to (\tau_1 \to \tau_2)$

Note: Proving soundness is straightforward!
General approach

We added let, booleans, pairs, records, sums, and fix

- **let** was syntactic sugar
- **fix** made us Turing-complete by “baking in” self-application
- The others *added types*

Whenever we add a new form of type \(\tau \) there are:

- Introduction forms (ways to make values of type \(\tau \))
- Elimination forms (ways to use values of type \(\tau \))

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim forms”?

Anonymity

We added many forms of types, all *unnamed* a.k.a. *structural*.
Many real PLs have (all or mostly) *named* types:

- Java, C, C++: all record types (or similar) have names
 - Omitting them just means compiler makes up a name
- OCaml sum types and record types have names

A never-ending debate:

- Structural types allow more code reuse: good
- Named types allow less code reuse: good
- Structural types allow generic type-based code: good
- Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types

Termination

Surprising fact: If \(\cdot \vdash e : \tau \) in STLC with all our additions except **fix**, then there exists a \(v \) such that \(e \rightarrow^* v \)

- That is, all programs terminate

So termination is trivially decidable (the constant “yes” function), so our language is not Turing-complete

The proof requires more advanced techniques than we have learned so far because the size of expressions and typing derivations does not decrease with each program step

- Could present it in about an hour if desired

Non-proof:

- Recursion in \(\lambda \) calculus requires some sort of self-application
 - Easy fact: For all \(\Gamma, x, \) and \(\tau \), we *cannot* derive \(\Gamma \vdash x : \tau \)