Types

Major new topic worthy of several lectures: Type systems
» Continue to use (CBV) Lambda Caluclus as our core model

» But will soon enrich with other common primitives

CSE-505: Programming Languages

This lecture:

Lecture 9 — Simply Typed Lambda Calculus

» Motivation for type systems
» What a type system is designed to do and not do

» Definition of stuckness, soundness, completeness, etc.
» The Simply-Typed Lambda Calculus

Zach Tatlock _
2015 » A basic and natural type system
» Starting point for more expressiveness later

Next lecture:
» Prove Simply-Typed Lambda Calculus is sound

Zach Tatlock CSE-505 2015, Lecture 9 2
Review: L-R CBV Lambda Calculus Introduction to Types

e n= Am.e|xz|ee Naive thought: More powerful PLs are always better

v = Ax.e » Be Turing Complete (e.g., Lambda Calculus or x86 Assembly)
Implicit systematic renaming of bound variables » Have really flexible features (e.g., lambdas)

> a-equivalence on expressions (“the same term”) » Have conveniences to keep programs short
e— e , , If this is the only metric, types are a step backward
e1 — € €2 — €,

» Whole point is to allow fewer programs
» A “filter” between abstract syntax and compiler/interpreter
» Fewer programs in language means less for a correct

(Az.e) v > e[v/z] e ez —€ejex ver—>ve,

eilez/x] = es implementation
—_ 7
y#£x eile/x] = €] eZ[Q/fE] = €2 » So if types are a great idea, they must help with other
zle/z] = e yle/z] =y (e1 e2)[e/z] = e 6/2 desirable properties for a PL...

eile/z]=e] y#zx ygFV(e)
(Ay. e1)[e/x] = Ay. €]

CSE-505 2015, Lecture 9

Zach Tatlock CSE-505 2015, Lecture 9 3 Zach Tatlock

Why types? (Part 1)

1. Catch “simple” mistakes early, even for untested code

Zach Tatlock

>
>

>

Example: “if" applied to “mkpair”
Even if some too-clever programmer meant to do it
Even though decidable type systems must be conservative

CSE-505 2015, Lecture 9

Why types? (Part 1)

1. Catch “simple” mistakes early, even for untested code

>
>

>

Example: “if" applied to “mkpair”
Even if some too-clever programmer meant to do it
Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., « v)

>
>

>

Ensure execution never gets to a “meaningless” state

But “meaningless” depends on the semantics

Each PL typically makes some things type errors (again being
conservative) and others run-time errors

3. Enforce encapsulation (an abstract type)

Zach Tatlock

>

>

>

Clients can't break invariants

Clients can’t assume an implementation

Requires safety, meaning no “stuck” states that corrupt
run-time (e.g., C/C++)

Can enforce encapsulation without static types, but types are a
particularly nice way

CSE-505 2015, Lecture 9

Why types? (Part 1)

1. Catch “simple” mistakes early, even for untested code

» Example: “if" applied to “mkpair”
» Even if some too-clever programmer meant to do it
» Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., « v)

5 Zach Tatlock

» Ensure execution never gets to a “meaningless”’ state

» But “meaningless” depends on the semantics

» Each PL typically makes some things type errors (again being
conservative) and others run-time errors

CSE-505 2015, Lecture 9

Why types? (Part 2)

4. Assuming well-typedness allows faster implementations

5 Zach Tatlock

» Smaller interfaces enable optimizations
» Don’t have to check for impossible states
» Orthogonal to safety (e.g., C/C++)

CSE-505 2015, Lecture 9

Why types? (Part 2) Why types? (Part 2)

4. Assuming well-typedness allows faster implementations 4. Assuming well-typedness allows faster implementations
» Smaller interfaces enable optimizations » Smaller interfaces enable optimizations
» Don't have to check for impossible states » Don’t have to check for impossible states
» Orthogonal to safety (e.g., C/C++) » Orthogonal to safety (e.g., C/C++)
5. Syntactic overloading 5. Syntactic overloading
» Have symbol lookup depend on operands’ types » Have symbol lookup depend on operands’ types
» Only modestly interesting semantically » Only modestly interesting semantically
» Late binding (lookup via run-time types) more interesting » Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions

» Often via a “type-and-effect” system

» Deep similarities in analyses suggest type systems a good way
to think-about/define/prove what you're checking

» Uncaught exceptions, tainted data, non-termination, 10
performed, data races, dangling pointers, ...

Zach Tatlock CSE-505 2015, Lecture 9 6 Zach Tatlock CSE-505 2015, Lecture 9 6
Why types? (Part 2) What is a type system?
4. Assuming well-typedness allows faster implementations Er, uh, you know it w-hen you see it. So.mfe clues:
» Smaller interfaces enable optimizations > A decidable (?) judgment for classifying programs
» Don’'t have to check for impossible states > E.g., e1 + es has type int if e1, e have type int (else no type)
» Orthogonal to safety (e.g., C/C++) » A sound (?) abstraction of computation
» E.g., if e1 + ez has type int, then evaluation produces an int
5. Syntactic overloading (with caveats!))
» Have symbol lookup depend on operands’ types » Fairly syntax directed

» Only modestly interesting semantically

o _ , _ _ » Non-example (7): e terminates within 100 steps
» Late binding (lookup via run-time types) more interesting

» Particularly fuzzy distinctions with abstract interpretation

» Possible topic for a later lecture
» Often a more natural framework for flow-sensitive properties
» Types often more natural for higher-order programs

6. Detect other errors via extensions

» Often via a “type-and-effect” system

» Deep similarities in analyses suggest type systems a good way
to think-about/define/prove what you're checking

» Uncaught exceptions, tainted data, non-termination, 10)
performed, data races, dangling pointers, ... MOre rigorous answers

We'll focus on (1), (2), and (3) and maybe (6) » Later lecture: Typed PLs are like proof systems for logics

This is a CS-centric, PL-centric view. Foundational type theory has

Zach Tatlock CSE-505 2015, Lecture 9 6 Zach Tatlock CSE-505 2015, Lecture 9

Adding constants

Enrich the Lambda Calculus with integer constants:

» Not stricly necessary, but makes types seem more natural

Plan for 3ish weeks

» Simply typed A calculus
» (Syntactic) Type Soundness (i.e., safety)

» Extensions (pairs, sums, lists, recursion) e = Az.e|z|eel|c
Break for the Curry-Howard isomorphism; continuations; midterm v u= Az.e|c

> Subtyping . . .

. . No new operational-semantics rules since constants are values

» Polymorphic types (generics)

> Recursive types We could add 4 and other primitives

> Abstract types » Then we would need new rules (e.g., 3 small-step for +)

» Effect systems » Alternately, parameterize “programs” by primitives:

Aplus. Atimes. ... e

Homework: Adding back mutation > Like Pervasives in OCaml
> A great way to keep language definitions small

Omitted: Type inference

Zach Tatlock CSE-505 2015, Lecture 9 8 Zach Tatlock CSE-505 2015, Lecture 9

Stuck What's stuck?

Given our language, what are the set of stuck expressions?

Key issue: can a program ‘“get stuck” (reach a “bad” state)?
» Note: Explicitly defining the stuck states is unusual

» Definition: e is stuck if e is not a value and there is no e’
, e = Az.e|xz|ee|c
such thate — e
v = Az.e|c
o . . ,

> Defm’ltlo/n. e can get stuck if there exists an e’ such that er — €} ez — €

e —* e’ and e is stuck 7 n

(Ax.e) v —efv/x] el ez —ejex ver—ve,

» In a deterministic language, e “gets stuck”
(Hint: The full set is recursively defined.)
Most people don’t appreciate that stuckness depends on the G e
operational semantics
» Inherent given the definitions above

10 Zach Tatlock CSE-505 2015, Lecture 9

Zach Tatlock CSE-505 2015, Lecture 9

What's stuck?

Given our language, what are the set of stuck expressions?
» Note: Explicitly defining the stuck states is unusual

What's stuck?

Given our language, what are the set of stuck expressions?
» Note: Explicitly defining the stuck states is unusual
e = Ar.e|x|ee|c e = Az.e|xz|ee|c
v = Az.e|c

v u= Az.e|c =
/ /
ey — €4 €2 — €,

e1 — €] ez — €,

vex — v e, (Az.e) v > e[v/x] e1ex—>ejex vey —ve,

(Az. e) v = e[v/x] e1 ex — €] ez
(Hint: The full set is recursively defined.)

(Hint: The full set is recursively defined.)
Su=x|cv|Se|vS Su=z|cv|Se|vS

Note: Can have fewer stuck states if we add more rules

» Example: Javascript

» Example: ———
cv—v

» In unsafe languages, stuck states can set the computer on fire

11 Zach Tatlock CSE-505 2015, Lecture 9

Wrong Attempt

Zach Tatlock CSE-505 2015, Lecture 9

Soundness and Completeness
A type system is a judgment for classifying programs
> “accepts” a program if some complete derivation gives it a T == int|fn
type, else “rejects”
He:T
Fep:fn F es :int

A sound type system never accepts a program that can get stuck
Fep es:int

» No false negatives Y m b int
x.e:fn c:in

A complete type system never rejects a program that can't get stuck
» No false positives

It is typically undecidable whether a stuck state can be reachable
» Corollary: If we want an algorithm for deciding if a type
system accepts a program, then the type system cannot be

sound and complete
» We'll choose soundness, try to reduce false positives in

practice

12 Zach Tatlock CSE-505 2015, Lecture 9

Zach Tatlock CSE-505 2015, Lecture 9

Wrong Attempt Getting it right

T = int|fn 1. Need to type-check function bodies, which have free variables
Fe:r 2. Need to classify functions using argument and result types
Fei:fn F ez :int For (1): Te:=-|Tyz:7and Tk e: T
FAz.e:fn - c:int ~e1ez:int » Require whole program to type-check under empty context -
1. NO: can get stuck, e.g., (Az. y) 3 For (2): T i=int |7 — T

» An infinite number of types:

2. NO: too restrictive, e.g., (Ax. = 3) (Ay. y) int — int, (int — int) — int, int — (int — int), ...

3. NO: types not preserved, e.g., (Az. Ay. y) 3 o o
Concrete syntax note: — is right-associative, so

T1 —> T2 — T3 iST1—>(T2—)’T3)

Zach Tatlock CSE-505 2015, Lecture 9 13 Zach Tatlock CSE-505 2015, Lecture 9 14
STLC Type System A closer look

T u= int|T—o>T Fze:mbe:m

[ou= -[Dar F'FAx.e:m — 72

Where did 73 come from?

» Our rule “inferred” or “guessed” it

TEe:int Tkz:I(z) » To be syntax directed, change Axz. eto Az : 7. e
and use that 7
I'z:mmbe:m 'ei:m—>m I'kes:ms
THAr.e: T — T Thejer: T Can think of “adding =" as shadowing or requiring * € Dom(T")

» Systematic renaming (a-conversion) ensures x ¢ Dom(T") is
not a problem

The function-introduction rule is the interesting one...

Zach Tatlock CSE-505 2015, Lecture 9 15 Zach Tatlock CSE-505 2015, Lecture 9

A closer look Always restrictive

Le:mbe:m Whether or not a program “gets stuck” is undecidable:

FEAz.e:m — 72 » If e has no constants or free variables, then e (3 4) or e x

| o gets stuck if and only if e terminates (cf. the halting problem)
S our type system too restrictive!

> That's a matter of opinion Old conclusion: “Strong types for weak minds”

» But it does reject programs that don’t get stuck > Need a back door (unchecked casts)
Example: (Az. (z (Ay. y)) (x 3)) Az. z
» Does not get stuck: Evaluates to 3

» Does not type-check:

» Thereis no 7,72 such that z : 7 F (z (Ay. y)) (x 3) : T2
because you have to pick one type for x

Modern conclusion: Unsafe constructs almost never worth the risk
» Make “false positives” (rejecting safe program) rare enough
» Have compile-time resources for “fancy” type systems

» Make workarounds for false positives convenient enough

Zach Tatlock CSE-505 2015, Lecture 9 17 Zach Tatlock CSE-505 2015, Lecture 9 18
How does STLC measure up? Type Soundness
So far, STLC is sound:
» As language dictators, we decided ¢ v and undefined variables We will take a syntactic (operational) approach to
were “bad” meaning neither values nor reducible soundness/safety
» Qur type system is a conservative checker that an expression > The popular way since the early 1990s

will never get stuck
Theorem (Type Safety): If - - e : 7 then e diverges or e —»™ v

But STLC is far too restrictive: for an n and v such that - v : 7
» In practice, just too often that it prevents safe and natural > Thatis, if - = e : 7, then e cannot get stuck
code reuse
» More fundamentally, it's not even Turing-complete Proof: Next lecture

» Turns out all (well-typed) programs terminate

» A good-to-know and useful property, but inappropriate for a
general-purpose PL

» That's okay: We will add more constructs and typing rules

Zach Tatlock CSE-505 2015, Lecture 9 19 Zach Tatlock CSE-505 2015, Lecture 9

