Packet Filters

A very simple view of packet filters:
- Some bits come in off the wire
- Some application(s) want the “packet” and some do not (e.g., port number)
- For safety, only the O/S can access the wire
- For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Do not corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and “hope” it has these properties?
Language-based approaches

1. Interpret a language
 + clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly
 + clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly
 + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)

A General Pattern

Packet filters move the code to the data rather than data to the code

General reasons: performance, security, other?

Other examples:
- Query languages
- Active networks
- Client-side web scripts (Javascript)

Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer

- Semantics equivalence (we change the language):
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Note: Proofs may seem easy with the right semantics and lemmas
- (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more interesting things

What is equivalence?

Equivalence depends on what is observable!
What is equivalence?

Equivalence depends on what is observable!

▶ Partial I/O equivalence (if terminates, same ans)
 ▶ while 1 skip equivalent to everything
 ▶ not transitive

▶ Total I/O equivalence (same termination behavior, same ans)
 ▶ Total heap equivalence (same termination behavior, same heaps)
 ▶ All (almost all?) variables have the same value

▶ Equivalence plus complexity bounds
 ▶ Is $O(2^n)$ really equivalent to $O(n)$?
 ▶ Is "runs within 10ms of each other" important?

▶ Syntactic equivalence (perhaps with renaming)
 ▶ Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Zach Tatlock
CSE-505 2015, Lecture 6
What is equivalence?
Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - All (almost all?) variables have the same value
- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?
 - Is “runs within 10ms of each other” important?
- Syntactic equivalence (perhaps with renaming)
 - Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

What is equivalence?
Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - All (almost all?) variables have the same value
- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?
 - Is “runs within 10ms of each other” important?
- Syntactic equivalence (perhaps with renaming)
 - Too strict to be interesting?
Program Example: Strength Reduction

Motivation: Strength reduction
 ▶ A common compiler optimization due to architecture issues

Theorem: \(H ; e \ast 2 \Downarrow c \) if and only if \(H ; e + e \Downarrow c \)

Proof sketch:
 ▶ Prove separately for each direction
 ▶ Invert the assumed derivation, use hypotheses plus a little math to derive what we need

Zach Tatlock CSE-505 2015, Lecture 6 9

Zach Tatlock CSE-505 2015, Lecture 6 9
Program Example: Nested Strength Reduction

Theorem: If e' has a subexpression of the form $e \cdot 2$, then $H \; e' \downarrow c'$ if and only if $H \; e'' \downarrow c'$ where e'' is e' with $e \cdot 2$ replaced with $e + e$

First some useful metanotation:

$$C ::= [\cdot] \mid C + e \mid e + C \mid C \cdot e \mid e \cdot C$$

$C[e]$ is “C with e in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:

$H \; C[e \cdot 2] \downarrow c'$ if and only if $H \; C[e + e] \downarrow c'$

Proof sketch: By induction on structure (“syntax height”) of C

− The base case ($C = [\cdot]$) follows from our previous proof
− The rest is a long, tedious, (and instructive!) induction

Proof reuse

As we cannot emphasize enough, proving is just like programming

The proof of nested strength reduction had nothing to do with $e \cdot 2$ and $e + e$ except in the base case where we used our previous theorem

A much more useful theorem would parameterize over the base case so that we could get the “nested X” theorem for any appropriate X:

If $(H ; e_1 \downarrow c$ if and only if $H ; e_2 \downarrow c)$, then $(H ; C[e_1] \downarrow c'$ if and only if $H ; C[e_2] \downarrow c')$

The proof is identical except the base case is “by assumption”
Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all \(n \), if \(H ; s_1; (s_2; s_3) \rightarrow^n H' ; \text{skip} \) then there exist \(H'' \) and \(n' \) such that \(H ; (s_1; s_2); s_3 \rightarrow^{n'} H'' ; \text{skip} \) and \(H''(\text{ans}) = H'(\text{ans}) \).

(b) If for all \(n \) there exist \(H' \) and \(s' \) such that \(H ; s_1; (s_2; s_3) \rightarrow^n H' ; s' \), then for all \(n \) there exist \(H'' \) and \(s'' \) such that \(H ; (s_1; s_2); s_3 \rightarrow^n H'' ; s'' \).

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.

Language Equivalence Example

IMP w/o multiply large-step:

\[
\begin{align*}
\text{CONST} & \quad \text{VAR} & \quad \text{ADD} \\
H ; c \downarrow c & \quad H ; x \downarrow H(x) & \quad H ; e_1 \downarrow c_1 \quad H ; e_2 \downarrow c_2 \\
& \quad H ; e_1 + e_2 \downarrow c_1 + c_2 \\
\end{align*}
\]

IMP w/o multiply small-step:

\[
\begin{align*}
\text{SVAR} & \quad \text{SADD} \\
H ; x \rightarrow H(x) & \quad H ; c_1 + c_2 \rightarrow c_1 + c_2 \\
\end{align*}
\]

SLEFT

\[
\begin{align*}
H ; e_1 \rightarrow e'_1 & \quad H ; e_1 + e_2 \rightarrow e'_1 + e_2 \\
\end{align*}
\]

SRIGHT

\[
\begin{align*}
H ; e_2 \rightarrow e'_2 & \quad H ; e_1 + e_2 \rightarrow e_1 + e'_2 \\
\end{align*}
\]

Theorem: Semantics are equivalent: \(H ; e \downarrow c \) if and only if \(H ; e \rightarrow^* c \)

Proof: We prove the two directions separately...

Proof, part 1

First assume \(H ; e \downarrow c \) and show \(\exists n. \ H ; e \rightarrow^n c \)
Proof, part 1

First assume $H; e \downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$.

- Proof by induction on n
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of $H; e \downarrow c$

- CONST: Derivation with CONST implies $e = c$, and we can derive $H; c \rightarrow^0 c$
- VAR: Derivation with VAR implies $e = x$ for some x where $H(x) = c$, so derive $H; e \rightarrow^1 c$ with SVAR

Proof, part 1

First assume $H; e \downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$.

- Proof by induction on n
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of $H; e \downarrow c$

- CONST: Derivation with CONST implies $e = c$, and we can derive $H; c \rightarrow^0 c$
- VAR: Derivation with VAR implies $e = x$ for some x where $H(x) = c$, so derive $H; e \rightarrow^1 c$ with SVAR
- ADD: ...
Part 1, continued

First assume \(H ; e \downarrow c \) and show \(\exists n. \ H; e \rightarrow^n c \)

Lemma (prove it!): If \(H; e \rightarrow^n e' \), then \(H; e_1 + e \rightarrow^n e_1 + e' \) and \(H; e + e_2 \rightarrow^n e' + e_2 \).

Given the lemma, prove by induction on derivation of \(H; e \downarrow c \)

- ADD: Derivation with ADD implies \(e = e_1 + e_2, c = c_1 + c_2 \), \(H; e_1 \downarrow c_1 \), and \(H; e_2 \downarrow c_2 \) for some \(e_1, e_2, c_1, c_2 \).

Part 1, continued

First assume \(H ; e \downarrow c \) and show \(\exists n. \ H; e \rightarrow^n c \)

Lemma (prove it!): If \(H; e \rightarrow^n e' \), then \(H; e_1 + e \rightarrow^n e_1 + e' \) and \(H; e + e_2 \rightarrow^n e' + e_2 \).

Given the lemma, prove by induction on derivation of \(H; e \downarrow c \)

- ADD: Derivation with ADD implies \(e = e_1 + e_2, c = c_1 + c_2 \), \(H; e_1 \downarrow c_1 \), and \(H; e_2 \downarrow c_2 \) for some \(e_1, e_2, c_1, c_2 \).

By induction (twice), \(\exists n_1, n_2. \ H; e_1 \rightarrow^{n_1} c_1 \) and \(H; e_2 \rightarrow^{n_2} c_2 \).

So by our lemma \(H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2 \) and \(H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2 \).
Proof, part 2

Now assume \(\exists n. \; H; e \rightarrow^n c \) and show \(H; e \downarrow c \).

Proof by induction on \(n \):

\[\begin{align*}
& n = 0: \; e \text{ is } c \text{ and } \text{const} \text{ lets us derive } H; c \downarrow c \\
& n > 0: \text{ deriv. of } H; e \rightarrow^{n-1} e' \text{ and deriv. of } H; e' \rightarrow^{n-1} e'' \\
& \text{ by induction (twice), } \exists n_1, n_2. \; H; e_1 \rightarrow^{n_1} e_1' \text{ and } H; e_2 \rightarrow^{n_2} e_2'. \\
& \text{ So by our lemma } H; e_1 + e_2 \rightarrow^{n_1+n_2} e_1' + e_2'. \\
& \text{ By SADD } H; e_1 + e_2 \rightarrow^n c_1 + c_2. \\
& \text{ So } H; e_1 + e_2 \rightarrow^n c. \\
\end{align*} \]
Proof, part 2

Now assume ∃n. H; e \rightarrow^c c and show H ; e \Downarrow c.

Proof by induction on n:

- **n = 0**: e is c and const lets us derive H ; c \Downarrow c
- **n > 0**: (Clever: break into first step and remaining ones)
 ∃e'. H; e \rightarrow e' and H; e' \rightarrow^{n-1} c.
 By induction H ; e' \Downarrow c.
 So this lemma suffices: If H; e \rightarrow e' and H ; e' \Downarrow c, then H ; e \Downarrow c.

Prove the lemma by induction on derivation of H; e \rightarrow e':

- SVAR: ...
- SADD: ...
- SLEFT: ...
- SRIGHT: ...
Part 2, key lemma

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

- svar: Derivation with svar implies e is some x and $e' = H(x) = c$, so derive, by VAR, $H; x \Downarrow H(x)$.
- sadd: Derivation with sadd implies e is some $c_1 + c_2$ and $e' = c_1 + c_2 = c$, so derive, by ADD and two const, $H; c_1 + c_2 \Downarrow c_1 + c_2$.

Part 2, key lemma

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

- svar: Derivation with svar implies e is some x and $e' = H(x) = c$, so derive, by VAR, $H; x \Downarrow H(x)$.
- sadd: Derivation with sadd implies e is some $c_1 + c_2$ and $e' = c_1 + c_2 = c$, so derive, by ADD and two const, $H; c_1 + c_2 \Downarrow c_1 + c_2$.
- sleft: Derivation with sleft implies $e = e_1 + e_2$ and $e' = e_1' + e_2$ and $H; e_1 \rightarrow e_1'$ for some e_1, e_2, e_1'.
Part 2, key lemma

Lemma: If $H; e \rightarrow e'$ and $H; e \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

- **SVAR**: Derivation with SVAR implies e is some x and $e' = H(x) = c$, so derive, by VAR, $H; x \Downarrow H(x)$.
- **SADD**: Derivation with SADD implies e is some $c_1 + c_2$ and $e' = c_1 + c_2 = c$, so derive, by ADD and two CONST, $H; c_1 + c_2 \Downarrow c_1 + c_2$.
- **SLEFT**: Derivation with SLEFT implies $e = e_1 + e_2$ and $e' = e_1' + e_2$ and $H; e_1 \rightarrow e_1'$ for some e_1, e_2, e_1'. Since $e' = e_1' + e_2$ inverting assumption $H; e' \Downarrow c$ gives $H; e_1' \Downarrow c_1$, $H; e_2 \Downarrow c_2$ and $c = c_1 + c_2$. Applying the induction hypothesis to $H; e_1 \rightarrow e_1'$ and $H; e_1' \Downarrow c_1$ gives $H; e_1 \Downarrow c_1$. So use ADD, $H; e_1 \Downarrow c_1$, and $H; e_2 \Downarrow c_2$ to derive $H; e_1 + e_2 \Downarrow c_1 + c_2$.
The cool part, redux

Step through the \texttt{sleft} case more visually:

By assumption, we must have derivations that look like this:

\[
\frac{H; e_1 \rightarrow e'_1}{H; e_1 + e_2 \rightarrow e'_1 + e_2} \quad \frac{H; e'_1 \downarrow c_1}{H; e_2 \downarrow c_2} \quad \frac{H; e'_1 + e_2 \downarrow c_1 + c_2}{H; e_1 + e_2 \downarrow c_1 + c_2}
\]

Grab the hypothesis from the left and the left hypothesis from the right and use induction to get \(H; e_1 \downarrow c_1\).

Now go grab the one hypothesis we haven’t used yet and combine it with our inductive result to derive our answer:

\[
\frac{H; e_1 \downarrow c_1}{H; e_2 \downarrow c_2} \quad \frac{H; e_1 + e_2 \downarrow c_1 + c_2}{H; e_1 + e_2 \downarrow c_1 + c_2}
\]

A nice payoff

Theorem: The small-step semantics is deterministic:
if \(H; e \rightarrow^* c_1\) and \(H; e \rightarrow^* c_2\), then \(c_1 = c_2\)

Not obvious (see \texttt{sleft} and \texttt{srigh}), nor do I know a direct proof

\begin{itemize}
 \item Given \(((1 + 2) + (3 + 4)) + (5 + 6) + (7 + 8)\) there are many execution sequences, which all produce 36 but with different intermediate expressions
\end{itemize}

Proof:

\begin{itemize}
 \item Large-step evaluation is deterministic (easy induction proof)
 \item Small-step and and large-step are equivalent (just proved that)
 \item So small-step is deterministic
 \item Convince yourself a deterministic and a nondeterministic semantics cannot be equivalent
\end{itemize}
Conclusions
▶ Equivalence is a subtle concept
▶ Proofs “seem obvious” only when the definitions are right
▶ Some other language-equivalence claims:

Replace WHILE rule with

\[
\begin{align*}
\frac{H \; ; \; e \downarrow c \; \; c \leq 0}{H \; ; \; \text{while } e \; s \rightarrow H \; ; \; \text{skip}} & \quad \frac{H \; ; \; e \downarrow c \; \; c > 0}{H \; ; \; \text{while } e \; s \rightarrow H \; ; \; s; \; \text{while } e \; s}
\end{align*}
\]

Equivalent to our original language

Replace WHILE rule with

\[
\begin{align*}
\frac{H \; ; \; e \downarrow c \; \; c \leq 0}{H \; ; \; \text{while } e \; s \rightarrow H \; ; \; \text{skip}} & \quad \frac{H \; ; \; e \downarrow c \; \; c > 0}{H \; ; \; \text{while } e \; s \rightarrow H \; ; \; s; \; \text{while } e \; s}
\end{align*}
\]

Equivalent to our original language

Change syntax of heap and replace ASSIGN and VAR rules with

\[
\begin{align*}
\frac{H \; ; \; x := e \rightarrow H, \; x \mapsto e \; ; \; \text{skip}}{H \; ; \; H(x) \downarrow c} \quad \frac{H \; ; \; x \downarrow c}{H \; ; \; x \downarrow c}
\end{align*}
\]
Conclusions

- Equivalence is a subtle concept
- Proofs “seem obvious” only when the definitions are right
- Some other language-equivalence claims:

Replace WHILE rule with

\[
\begin{align*}
H ; e \Downarrow c & \quad c \leq 0 \\
\hline
H ; \text{while } e \; s \rightarrow H ; \text{skip} & \quad H ; e \Downarrow c \quad c > 0 \\
\hline
H ; \text{while } e \; s \rightarrow H ; s ; \text{while } e \; s
\end{align*}
\]

Equivalent to our original language

Change syntax of heap and replace ASSIGN and VAR rules with

\[
\begin{align*}
H ; x := e & \rightarrow H, x \mapsto e ; \text{skip} \\
\hline
H ; H(x) \Downarrow c & \quad H ; x \Downarrow c
\end{align*}
\]

NOT equivalent to our original language