Where are we

- System F gave us type abstraction
 - code reuse
 - strong abstractions
 - different from real languages (like ML), but the right foundation

- This lecture: Recursive Types (different use of type variables)
 - For building unbounded data structures
 - Turing-completeness without a fix primitive

- Future lecture (?): Existential types (dual to universal types)
 - First-class abstract types
 - Closely related to closures and objects

- Future lecture (?): Type-and-effect systems

Recursive Types

We could add list types (list(τ)) and primitives ([], ::, match), but we want user-defined recursive types

Intuition:

\[
\text{type intlist} = \text{Empty} \mid \text{Cons int * intlist}
\]

Which is roughly:

\[
\text{type intlist} = \text{unit} + (\text{int} \ast \text{intlist})
\]

- Seems like a named type is unavoidable
 - But that's what we thought with let rec and we used fix

- Analogously to fix \(\lambda x. e\), we'll introduce \(\mu \alpha. \tau\)
 - Each \(\alpha\) "stands for" entire \(\mu \alpha. \tau\)

Mighty \(\mu\)

In \(\tau\), type variable \(\alpha\) stands for \(\mu \alpha. \tau\), bound by \(\mu\)

Examples (of many possible encodings):

- int list (finite or infinite): \(\mu \alpha. \text{unit} + (\text{int} \ast \alpha)\)
- int list (infinite "stream"): \(\mu \alpha. \text{int} \ast \alpha\)
 - Need laziness (thunking) or mutation to build such a thing
 - Under CBV, can build values of type \(\mu \alpha. \text{unit} \rightarrow (\text{int} \ast \alpha)\)
- int list list: \(\mu \alpha. \text{unit} + ((\mu \beta. \text{unit} + (\text{int} \ast \beta)) \ast \alpha)\)

Examples where type variables appear multiple times:

- int tree (data at nodes): \(\mu \alpha. \text{unit} + (\text{int} \ast \alpha \ast \alpha)\)
- int tree (data at leaves): \(\mu \alpha. \text{int} + (\alpha \ast \alpha)\)
Using μ types

How do we build and use int lists \((\mu \alpha. \text{unit} + (\text{int} \times \alpha))\)?

We would like:

- empty list = \(A(())\)
 Has type: \(\mu \alpha. \text{unit} + (\text{int} \times \alpha)\)
 But our typing rules allow none of this (yet)

Using μ types

How do we build and use int lists \((\mu \alpha. \text{unit} + (\text{int} \times \alpha))\)?

We would like:

- empty list = \(A(())\)
 Has type: \(\mu \alpha. \text{unit} + (\text{int} \times \alpha)\)

- cons = \(\lambda x: \text{int}. \lambda y: (\mu \alpha. \text{unit} + (\text{int} \times \alpha)). B((x, y))\)
 Has type:
 \[\text{int} \to (\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \to (\mu \alpha. \text{unit} + (\text{int} \times \alpha))\]
Using \(\mu \) types (continued)

For empty list \(= A(() \) , one typing rule applies:

\[
\Delta ; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2
\]

\[
\Delta ; \Gamma \vdash A(e) : \tau_1 + \tau_2
\]

So we could show

\[
\Delta ; \Gamma \vdash A(() : \text{unit} + (\text{int} \ast (\mu \text{.unit} + (\text{int} \ast \alpha)))
\]

(since \(FTV(\text{int} \ast \mu \text{.unit} + (\text{int} \ast \alpha)) = \emptyset \subseteq \Delta \))

But we want \(\mu \text{.unit} + (\text{int} \ast \alpha) \)
Using μ types (continued)

For empty list = \(A(()) \), one typing rule applies:

\[
\frac{\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2}{\Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2}
\]

So we could show

\[
\Delta; \Gamma \vdash A(()) : \text{unit} + (\text{int} \ast (\mu \alpha. \text{unit} + (\text{int} \ast \alpha)))
\]

(since \(\text{FTV}(\text{int} \ast (\mu \alpha. \text{unit} + (\text{int} \ast \alpha))) = \emptyset \subseteq \Delta \))

But we want \(\mu \alpha. \text{unit} + (\text{int} \ast \alpha) \)

Notice: \(\text{unit} + (\text{int} \ast (\mu \alpha. \text{unit} + (\text{int} \ast \alpha))) \) is

\((\text{unit} + (\text{int} \ast \alpha))[((\mu \alpha. \text{unit} + (\text{int} \ast \alpha))/\alpha] \)

The key: Subsumption — recursive types are equal to their “unrolling”

Return of subtyping

Can use subsumption and these subtyping rules:

ROLL \[
\frac{\tau[(\mu \alpha. \tau)/\alpha] \leq \mu \alpha. \tau}{\mu \alpha. \tau \leq \tau[(\mu \alpha. \tau)/\alpha]}
\]

Subtyping can “roll” or “unroll” a recursive type

Can now give empty-list, cons, and head the types we want:

Constructors use roll, destructors use unroll

Notice how little we did: One new form of type \((\mu \alpha. \tau) \) and two new subtyping rules

(Skipping: Depth subtyping on recursive types is very interesting)

Metatheory

Despite additions being minimal, must reconsider how recursive types change STLC and System F:

- Erasure (no run-time effect): unchanged
- Termination: changed!
 - \((\lambda x: \mu \alpha. \alpha \rightarrow \alpha. \ x \ x)(\lambda x: \mu \alpha. \alpha \rightarrow \alpha. \ x \ x) \)
 - In fact, we’re now Turing-complete without fix (actually, can type-check every closed \(\lambda \) term)
- Safety: still safe, but Canonical Forms harder
- Inference: Shockingly efficient for “STLC plus μ”
 (A great contribution of PL theory with applications in OO and XML-processing languages)
Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary

Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

- Implicit typing can be impossible, difficult, or confusing
- Explicit coercions can be annoying and clutter language with no-ops
- Most languages do some of each

Anything is decidable if you make the code producer give the implementation enough “hints” about the “proof”

ML datatypes revealed

How is $\mu \alpha. \tau$ related to
type $t = \text{Foo of int} \mid \text{Bar of int * t}$

Constructor use is a “sum-injection” followed by an implicit roll

- So $\text{Foo } e$ is really $\text{roll } \text{Foo}(e)$
- That is, $\text{Foo } e$ has type t (the rolled type)

A pattern-match has an implicit unroll

- So match e with... is really match $\text{unroll } e$ with...

This “trick” works because different recursive types use different tags – so the type-checker knows which type to roll to