
(* * * Lecture 07 *)

Require Import Bool.
Require Import ZArith.
Require Import IMPSyntax.
Require Import IMPSemantics.

(* * ** Pseudo Denotational Semantics *)

(* * Here we’re going to explore what’s called "denoting" *)
(* * When we take a program and denote it, we simply give the meaning of the prog
ram *)
(* * in terms of something else *)

(* * Here, we’ll use the existing meaning of Coq to denote our programs *)

(* * If we have a binary operation, the meaning of that binary operation is a *)
(* * coq function of type Z −> Z −> Z *)
Definition denote_binop (op: binop) : Z −> Z −> Z :=
 exec_op op.

(* * When we denote an expression, the meaning of it depends on the current heap
*)
(* * Thus, the coq type of a denoted expresssion is heap −> Z *)
Fixpoint denote_expr (e: expr) : heap −> Z :=
 match e with
 | Int i =>
 fun _ => i
 | Var v =>
 fun h => h v
 | BinOp op e1 e2 =>
 let f := denote_binop op in
 let x := denote_expr e1 in
 let y := denote_expr e2 in
 fun h =>
 f (x h) (y h)
 end.

(* * Let’s play with denoting a few toy examples *)
Eval cbv in (denote_expr (" x" [+] " y")).
Eval cbv in ((denote_expr (" x" [+] " y")) empty).

Eval cbv in (denote_expr (" x" [+] 1)).
Eval cbv in ((denote_expr (" x" [+] 1)) empty).

(* * Note that for expressions, essentially the only difference between denoting
and interpreting is *)
(* * the stage at which the heap matters. When interpreting a program, we start w
ith a *)
(* * heap and expression, and crawl over the expression tree with both. *)
(* * When denoting an expression, we crawl over the entire expression _without_ t
he heap, giving meaning to the expression for all heaps *)
(* * Only afterwards do we derive meaning by providing a particular heap *)

(* * Here we can prove that we denoted expressions correctly. *)
(* * We want the meaning to match up in all cases *)
Lemma denote_expr_interp_expr:
 forall e h,
 (denote_expr e) h = interp_expr h e.
Proof.
 induction e; simpl; intros; auto.
 unfold denote_binop. congruence.
Qed.

(* * already connected interp_expr to eval,
 so now get denote connections "for free" *)
(* * Here we can show that our denotation function matches our evaluation relatio
n *)
Lemma denote_expr_eval:

Oct 22, 15 14:27 Page 1/3L07_annotated.v
 forall e h i,
 (denote_expr e) h = i <−> eval h e i.
Proof.
 intros. rewrite denote_expr_interp_expr.
 split.
 − apply interp_expr_eval.
 − apply eval_interp_expr.
Qed.

(* * Helpful little function *)
(* * Stands for "option bind" *)
(* * For more info as for why it’s named that, see documentation about monads *)
Definition obind {A B: Type} (oa: option A) (f: A −> option B) : option B :=
 match oa with
 | None => None
 | Some a => f a
 end.

(* * Here we give meaning to statements *)
(* * Note that this has type nat −> heap −> option heap *)
(* * instead of simply heap −> heap *)
(* * the nat will encode the amount of fuel we give to the program *)
(* * as the program could diverge *)
(* * the option encodes the fact that evaluation could fail *)
(* * though the only way to fail is running out of fuel *)
(* * careful to detect timeout (running out of fuel)! *)
Fixpoint denote_stmt (s: stmt) : nat −> heap −> option heap :=
 match s with
 | Nop =>
 fun _ h => Some h
 | Assign v e =>
 let de := denote_expr e in
 fun _ h => Some (update h v (de h))
 | Seq e1 e2 =>
 let d1 := denote_stmt e1 in
 let d2 := denote_stmt e2 in
 fun n h => obind (d1 n h) (d2 n)
 | Cond e s =>
 let de := denote_expr e in
 let ds := denote_stmt s in
 fun n h =>
 if Z_eq_dec 0 (de h) then
 Some h
 else
 ds n h
 | While e s =>
 let de := denote_expr e in
 let ds := denote_stmt s in
 fix loop n h :=
 match n with
 | O => None
 | S m =>
 if Z_eq_dec 0 (de h) then
 Some h
 else
 obind (ds n h) (loop m)
 end
 end.

Theorem nat_strong_ind’ :
 forall P : nat −> Prop,
 P 0%nat −>
 (forall n,
 (forall m, (m <= n)%nat −> P m) −> P (S n)) −>
 forall n, (forall m, (m <= n)%nat −> P m).
Proof.
 induction n; intros.
 − assert (m = 0%nat) by omega. subst. auto.

Oct 22, 15 14:27 Page 2/3L07_annotated.v

Printed by Zach Tatlock

Thursday October 22, 2015 1/2L07/L07_annotated.v

 − assert ((m <= n)%nat \/ m = S n) by omega.
 intuition. subst. auto.
Qed.

Lemma nat_strong_ind :
 forall (P : nat −> Prop),
 P 0%nat −>
 (forall n, (forall m, (m <= n)%nat −> P m) −> P (S n)) −>
 forall n, P n.
Proof.
 intros.
 eapply nat_strong_ind’; eauto.
Qed.

(* * Here’s what we might use for a different kind of induction on nats *)
(* * If we wanted to do different induction like we talked about in class *)
(* * This is what we might do *)
Lemma nat_parity_ind :
 forall (P : nat −> Prop),
 P 0%nat −>
 P 1%nat −>
 (forall n, P n −> P (S (S n))) −>
 forall n, P n.
Proof.
 induction n using nat_strong_ind; intros.
 eauto.
 destruct n. eauto.
 eapply H1. eapply H2.
 omega.
Qed.

Oct 22, 15 14:27 Page 3/3L07_annotated.v

Printed by Zach Tatlock

Thursday October 22, 2015 2/2L07/L07_annotated.v

