Oct 22, 15 14:27	L07_annotated.v	Page 1/3	Oct 22, 15 14:27	L07_annotated.v	Page 2/3
(** * Lecture 07 *)			forall e h i,	i i	
Require Import Bool. Require Import ZArith. Require Import IMPSyntax. Require Import IMPSemantic.	s.		<pre>(denote_expr e) h = Proof. intros. rewrite denot split. - apply interp_expr_e</pre>	1 <-> eval n e 1. e_expr_interp_expr. val.	
(** ** Pseudo Denotational	Semantics *)		Qed .	хрг.	
(** Here we're going to ex, (** When we take a program ram *) (** in terms of something of (** Here, we'll use the ex (** If we have a binary op.	plore what's called "denoting" *) and denote it, we simply give the me else *) isting meaning of Coq to denote our p eration, the meaning of that binary o	aning of the prog rograms *) peration is a *)	<pre>(** Helpful little func (** Stands for "option (** For more info as fo Definition obind {A B: match oa with None => None Some a => f a end.</pre>	tion *) bind" *) r why it's named that, see documentation . Type} (oa: option A) (f: A -> option B) :	about monads *) option B :=
<pre>(** coq function of type Z Definition denote_binop (op exec_op op.</pre>	-> Z -> Z *) p: binop) : Z -> Z -> Z :=		(** Here we give meanin	g to statements *)	
<pre>(** When we denote an expr *) (** Thus, the coq type of f Fixpoint denote_expr (e: e: match e with Int i => fun _ => i Var v => fun h => h v BinOp op el e2 => let f := denote_expr let y := denote_expr fun h => f (x h) (y h)</pre>	ession, the meaning of it depends on a denoted expresssion is heap -> Z *) xpr) : heap -> Z := p op in el in e2 in	the current heap	<pre>(** Note that this has (** instead of simply h (** the nat will encode (** as the program coul (** the option encodes (** though the only way (** careful to detect t Fixpoint denote_stmt (s match s with</pre>	<pre>type nat -> heap -> option heap *) eap -> heap *) the amount of fuel we give to the program d diverge *) the fact that evaluation could fail *) 'to fail is running out of fuel *) imeout (running out of fuel)! *) : stmt) : nat -> heap -> option heap := expr e in update h v (de h)) stmt el in</pre>	n *)
end.			let d2 := denote_ fun n h => objind	stmt e2 in (d1 n h) (d2 n)	
(** Let's play with denoti Eval cbv in (denote_expr (Eval cbv in ((denote_expr	ng a few toy examples *) "x" [+] "y")). ("x" [+] "y")) empty).		Cond e s => let de := denote_ let ds := denote_ fun n h =>	expr e in stmt s in	
Eval cbv in (denote_expr (Eval cbv in ((denote_expr	"x" [+] 1)). ("x" [+] 1)) empty).		if Z_eq_dec 0 (Some h	de h) then	
(** Note that for expression and interpreting is *) (** the stage at which the ith a *) (** heap and expression, a. (** When denoting an expre- he heap, giving meaning to (** Only afterwards do we of	ons, essentially the only difference heap matters. When interpreting a pr nd crawl over the expression tree wit ssion, we crawl over the entire expre the expression for all heaps *) derive meaning by providing a particu	between denoting ogram, we start w h both. *) ssion _without_ t lar heap *)	ds n h While e s => let de := denote_ fix loop n h := match n with O => None S m => is n den 0	expr e in stmt s in	
<pre>(** Here we can prove that (** We want the meaning to Lemma denote_expr_interp_ex forall e h, (denote_expr e) h = in</pre>	<pre>we denoted expressions correctly. *) match up in all cases *) xpr: terp_expr h e.</pre>		Some h else obind (ds n end end.	h) (loop m)	
induction e; simpl; intru unfold denote_binop. con Qed.	os; auto. gruence.		<pre>Theorem nat_strong_ind' forall P : nat -> Pro P 0%nat -> (forall p</pre>	: P,	
<pre>(** already connected inte so now get denote conn (** Here we can show that n *) Lemma denote_expr_eval:</pre>	rp_expr to eval, ections "for free" *) our denotation function matches our e	valuation relatio	<pre>(forall n, (m <= forall n, (forall m Proof. induction n; intros. - assert (m = 0%nat)</pre>	n)%nat -> P m) -> P (S n)) -> , (m <= n)%nat -> P m). by omega. subst. auto.	

```
L07_annotated.v
 Oct 22, 15 14:27
                                                                          Page 3/3
 - assert ((m <= n)nat \setminus m = S n) by omega.
    intuition. subst. auto.
Qed.
Lemma nat_strong_ind :
 forall (P : nat -> Prop),
    P 0%nat ->
    (forall n, (forall m, (m <= n)nat \rightarrow P m) \rightarrow P (S n)) \rightarrow
    forall n, P n.
Proof.
 intros.
 eapply nat_strong_ind'; eauto.
Qed.
(** Here's what we might use for a different kind of induction on nats *)
(** If we wanted to do different induction like we talked about in class *)
(** This is what we might do *)
Lemma nat_parity_ind :
 forall (P : nat -> Prop),
    P 0%nat ->
    P 1%nat ->
    (forall n, P n -> P (S (S n))) ->
    forall n, P n.
Proof.
 induction n using nat_strong_ind; intros.
 eauto.
 destruct n. eauto.
 eapply H1. eapply H2.
 omega.
Qed.
```