(** * Lecture 03 *)

(** include some useful libraries *)

Require Import Bool.
Require Import List.
Require Import String.
Require Import Omega.

(** List provides the cons notation "::"
"x :: xs" is the same as "cons x xs"
*)

Fixpoint my_length {A: Set} (l: list A) : nat :=
 match l with
 | nil => O
 | x :: xs => S (my_length xs)
 end.

(** List provides the append notation "++"
"xs ++ ys" is the same as "app xs ys"
*)

Fixpoint my_rev {A: Set} (l: list A) : list A :=
 match l with
 | nil => nil
 | x :: xs => rev xs ++ x :: nil
 end.

(** some interesting types *)

(** Prop is like Set, but for propositions *)

Inductive myTrue : Prop :=
 I : myTrue.

Lemma foo:
 myTrue.
 Proof. constructor. (** exact I. *)
 Qed.

Lemma foo':
 Set.
 Proof.
 exact (list nat).
 (** exact bool. *)
 Qed.

Inductive myFalse : Prop :=
 .

Print False.

Lemma bogus:
 False -> 1 = 2.
 Proof.
 intros.
 (** inversion does case analysis on a hypothesis. For each way
 that hypothesis could have been proved, you need to complete the
 subgoal *)
 inversion H.
 Qed.

Lemma also_bogus:
 1 = 2 -> False.

Print eq.

Inductive yo : Prop :=
 yolo : yo -> yo.

Lemma yoyo:
 yo -> False.
 Proof.
 intros.
 inversion H. inversion H0. inversion H1.
 (** well, that didn't work *)
 induction H.
 assumption. (** but that did! *)
 Qed.

(** check out negation *)

Print not.

(** ** Expression Syntax *)

(** We can define parts of a language as an inductive datatype. *)

Inductive expr : Set :=
 Const : nat -> expr
 | Var : string -> expr
 | Add : expr -> expr -> expr
 | Mul : expr -> expr -> expr
 | Cmp : expr -> expr -> expr.

Check (Const 0).
Check (Var "x").
Check (Add (Const 0) (Var "x")).
Check (Mul (Add (Const 0) (Var "x")) (Add (Const 0) (Var "y")))
 (Mul (Var "y") (Const 0))).

(** On paper, this would be written as a
"BNF grammar" as:

<<
expr ::= N | V | expr <+> expr | expr <*> expr | expr <?> expr
>>

(** Coq provides mechanism to define
your own notation which we can use

to get "concrete syntax" *)

Notation "'C' X" := (Const X) (at level 80).
Notation "'V' X" := (Var X) (at level 81).
Notation "X <+> Y" := (Add X Y) (at level 83, left associativity).
Notation "X <*> Y" := (Mul X Y) (at level 82, left associativity).
Notation "X <?> Y" := (Cmp X Y) (at level 84).

Check (C 0).
Check (V"x").
Check (C 0 <+> V"x").
Check (C 0 <+> V"x" <+> C 0 <+> V"x").
Check \((C \ 0 \ <+> V{}^*x) \ <==> \ (C \ 0 \ <+> V{}^*x))\).
Check \((C \ 0 \ <+> V{}^*x) \ <==> \ V{}^*y \ <+> C \ 0\).

(** try View == Display all basic low-level contents *)

(** parsing is classic CS topic, but won’t say much more *)

Fixpoint nconsts (e: expr) : nat :=
match e with
| Const _ => 1 (* same as S O *)
| Var _ => 0 (* same as O *)
| Add e1 e2 => nconsts e1 + nconsts e2
(* same as plus (nconsts e1) (nconsts e2) *)
| Mul e1 e2 => nconsts e1 + nconsts e2
| Cmp e1 e2 => nconsts e1 + nconsts e2
end.

(** we can write functions to analyze expressions *)

Lemma expr_w_3_consts:
exists e, nconsts e = 3.
Proof. exists (C 3 <+> C 2 <+> C 1).
simpl. reflexivity.
Qed.

Fixpoint esize (e: expr) : nat :=
match e with
| Const _ => 1 (* same as S O *)
| Var _ => 1 | Add e1 e2 => esize e1 + esize e2
(* same as plus (esize e1) (esize e2) *)
| Mul e1 e2 => esize e1 + esize e2
| Cmp e1 e2 => esize e1 + esize e2
end.

(** and do proofs about programs *)

Lemma nconsts_le_size: forall e, nconsts e <= esize e.
Proof. intros.
 induction e.
 + simpl.
 auto.
 (** auto will solve many simple goals *)
 + simpl. auto.
 + simpl. omega.
 (** omega will solve many arithmetic goals *)
 + simpl. omega.
 + simpl. omega.
Qed.

(** that proof had a lot of copy-past : (*)

Lemma nconsts_le_size':
forall e, nconsts e <= esize e.
Proof. intros.
 (**
 induction e;"
 on every resulting subgoal do simpl, then
 on every resulting subgoal do auto, then
 on every resulting subgoal do omega
 *)
 induction e; simpl; auto; omega.
 (** note that after the auto,
 only the Add, Mul, and Cmp subgoals remain,
 but it's hard to tell since
 the proof does not "pause" *)
Qed.

Locate "\<=".

(* take a second to consider \<= *)
Print le.

(** it's a relation defined as an inductive predicate *)

(** we give rules for when the relation holds *)

(** we can define our own relations
to encode properties of expressions *)

Inductive has_const : expr -> Prop :=
 | hc_const : forall n, has_const (Const n)
 | hc_add_l : forall e1 e2, has_const e1 -> has_const (Add e1 e2)
 | hc_add_r : forall e1 e2, has_const e2 -> has_const (Add e1 e2)
 | hc_mul_l : forall e1 e2, has_const e1 -> has_const (Mul e1 e2)
 | hc_mul_r : forall e1 e2, has_const e2 -> has_const (Mul e1 e2)
 | hc_cmp_l : forall e1 e2, has_const e1 -> has_const (Cmp e1 e2)
 | hc_cmp_r :forall e1 e2, has_const e2 -> has_const (Cmp e1 e2).

Lemma add_mul_comm:
forall e1 e2, Add e1 e2 = Add e2 e1 -> False.
Proof.
 intros.
 specialize (H (Const 0) (Const 1)).
 inversion H.
Qed.

Inductive has_var : expr -> Prop :=
 | hv_var : forall s, has_var (Var s)
 | hv_add_l :forall e1 e2, has_var e1 -> has_var (Add e1 e2)
 | hv_add_r :forall e1 e2, has_var e2 -> has_var (Add e1 e2)
 | hv_mul_l :forall e1 e2, has_var e1 -> has_var (Mul e1 e2)
Fixpoint hasConst (e: expr) : bool :=
match e with
| Const _ => true
| Var _ => false
| Add e1 e2 => orb (hasConst e1) (hasConst e2)
| Mul e1 e2 => orb (hasConst e1) (hasConst e2)
| Cmp e1 e2 => orb (hasConst e1) (hasConst e2)
end.

(* we could also write boolean functions
 to check the same properties *)

Fixpoint hasVar (e: expr) : bool :=
match e with
| Const _ => false
| Var _ => true
| Add e1 e2 => hasVar e1 || hasVar e2
| Mul e1 e2 => hasVar e1 || hasVar e2
| Cmp e1 e2 => hasVar e1 || hasVar e2
end.

(* the Bool library provides "||" as a notation for orb *)

Lemma has_const_hasConst:
forall e, has_const e -> hasConst e = true.
Proof.
 intros. induction e.
 + (* we can prove this case with a constructor *)
 apply hc_const.
 (* constructor. *)
 apply hc_const. (* this uses hc_const *)
 + (* Uh oh, no constructor for has_const can possibly produce a value of our goal type! It's OK though because we have a bogus hypothesis. *)
 discriminate.
 + (* now do Add case *)
 simp in H. (* either e1 or e2 had a Const *)
 apply orb_true_iff in H. (* consider cases for H *)
 destruct H.
 - (* e1 had a Const *)
 apply hc_add_l. (* constructor. *)
 + (* Mul case is similar *)
 simp in H; apply orb_true_iff in H; destruct H.
 - (* constructor will just use hc_mul_l *)
 constructor. apply lcmul. assumption.
 - (* constructor will screw up and try hc_mul_l again! *)
 constructor. (** OOPS! *)
 Undo.

End hasConst.
apply hc_mul_r. apply IH2. assumption.
+ (** Cmp case is similar *)
 simpl in H; apply orb_true_iff in H; destruct H.
 - constructor; auto.
 - apply hc_cmp_r; auto.
Qed.

(** all that was only for the true cases! *)
(** can also use not and do the false cases *)

Lemma not_has_const_hasConst:
 forall e, ~ has_const e -> hasConst e = false.
Proof.
 unfold not. intros.
 induction e.
 + simpl.
 (** uh oh, trying to prove something bogus *)
 (** better exploit a bogus hypothesis *)
 exfalso. (** proof by contradiction *)
 apply H. constructor.
 + simpl. reflexivity.
 + simpl. apply orb_false_iff.
 (** prove conjunction by proving left and right *)
 split.
 - apply IH1. intro.
 apply H. apply hc_add_l. assumption.
 - apply IH2. intro.
 apply H. apply hc_add_r. assumption.
 + (** Mul case is similar *)
 simpl; apply orb_false_iff.
 split.
 - apply IH1. intro.
 apply H. apply hc_mul_l. assumption.
 - apply IH2; intro.
 apply H. apply hc_mul_r. assumption.
 + (** Cmp case is similar *)
 simp; apply orb_false_iff.
 split.
 - apply IH1; intro.
 apply H. apply hc_cmp_l. assumption.
 - apply IH2; intro.
 apply H. apply hc_cmp_r. assumption.
Qed.

Lemma false_hasConst_hasConst:
 forall e, hasConst e = false -> ~ has_const e.
Proof.
 unfold not. intros.
 induction e; (* crunch down everything in subgoals *)
 simpl in *.
 + discriminate.
 + inversion H0.
 + apply orb_false_iff in H.
 (** get both proofs out of a conjunction *)
 by destructing it *)
 destruct H.
 (** case analysis on H0 *)
 (** DISCUSS: how do we know to do this? *)
 inversion H0.
 - subst. auto. (** auto will chain things for us *)
 - subst. auto.
 + (** Mul case similar *)
 appl orb_false_iff in H; destruct H.
 inversion H0; subst; auto.
 Qed.

(/** we can stitch all these together */)

Lemma has_const_iff_hasConst:
 forall e, has_const e <-> hasConst e = true.
Proof.
 intros. split.
 + (** -> *)
 apply has_const_hasConst.
 + (** <- *)
 apply hasConst_has_const.
Qed.

(/** We can also do all the same sorts of proofs for has_var and hasVar *)

Lemma has_var_hasVar:
 forall e, has_var e -> hasVar e = true.
Proof.
 (** TODO: try this without copying from above *)
 Admitted.

Lemma hasVar_has_var:
 forall e, hasVar e = true -> has_var e.
Proof.
 (** TODO: try this without copying from above *)
 Admitted.

Lemma has_var_iff_hasVar:
 forall e, has_var e <-> hasVar e = true.
Proof.
 (** TODO: try this without copying from above *)
 Admitted.

(/** we can also prove things about expressions *)

Lemma expr_bottoms_out:
 forall e, has_const e / has_var e.
Proof.
 intros. induction e.
 + (** prove left side of disjunction *)
 left.
 constructor.
 + (** prove right side of disjunction *)
 right.
 constructor.
 + (** case analysis on IH1 *)
 destruct IH1.
 - left. constructor. assumption.
 - right. constructor. assumption.
 + (** Mul case similar *)
 destruct IH1.
 - left. constructor. assumption.
 - right. constructor. assumption.
 + (** Cmp case similar *)
 destruct IH1.
 - left. constructor. assumption.
 - right. constructor. assumption.
Qed.
(* we could have gotten some of the
 has_const lemmas by being a little clever!
 (but then we wouldn’t have
 learned as many tactics ;) *)

Lemma has_const_hasConst’:
 forall e, has_const e -> hasConst e = true.
Proof. intros.
 induction H; simpl; reflexivity.
 Qed. Admitted.

Lemma has_const_hasConst’’:
 forall e, has_const e -> hasConst e = true.
Proof. intros.
 induction H; simpl; auto; rewrite orb_true_iff; auto.
 Qed.

Lemma not_has_const_hasConst’:
 forall e, ~ has_const e -> hasConst e = false.
Proof. unfold not; intros.
 destruct (hasConst e) eqn:?:.
 - exfalso. apply H.
 - rewrite has_const_hasConst in Heqb.
 Qed.

Lemma false_hasConst_hasConst’:
 forall e, hasConst e = false -> ~ has_const e.
Proof. unfold not; intros.
 destruct (hasConst e) eqn:?:.
 - discriminate.
 - rewrite has_const_hasConst.
 (* NOTE: we got another subgoal! *)

Qed.

(* In general:
 - relational defs are nice when you want to use inversion
 - functional defs are nice when you want to use simpl *)