(*) Lecture 03 *)

(* include some useful libraries *)
Require Import Bool.
Require Import List.
Require Import String.
Require Import Omega.

(* List provides the cons notation "::"
"x :: xs" is the same as "cons x xs"
*)
Fixpoint my_length {A:Set} (l:list A) : nat :=
 match l with
 | nil => O
 | x :: xs => S (my_length xs)
 end.

(* List provides the append notation "++"
"xs ++ ys" is the same as "app xs ys"
*)
Fixpoint my_rev {A:Set} (l:list A) : list A :=
 match l with
 | nil => nil
 | x :: xs => rev xs ++ x :: nil
 end.

(* some interesting types *)

(* Prop is the type of proofs *)
(* Just like Set, we use it as a type for things *)
(* Unlike Set, we mainly use it for the type of facts *)

Inductive myTrue : Prop :=
 I : myTrue.
Lemma foo :
 myTrue.
Proof.
 constructor.
 (** exact I. *)
Qed.

Lemma foo' :
 Set.
Proof.
 exact bool.
 (** exact (list nat). *)
 (** exact nat. *)
Qed.

Lemma also_bogus:
 1 = 2 -> False.
Proof.
 intros.
 (** discriminate is a tactic that looks for mismatching constructors *)
 (** under the hood, 1 looks like S (0) and 2 looks like S (S 0) *)
 (** It peels off one S, gets 0 = S 0 *)
 (** 0 and S are different constructors, thus they are not equal *)
discriminate.
Qed.

(* Note that even equality is defined, not built in *)
Print eq.

(* What’s wrong with this? *)
(* There’s no way to build any objects of type yo *)
Inductive yo : Prop :=
 yolo : yo -> yo.
(* We want to prove that no objects of type yo exist *)
(* We can prove that any object of that type would mean False *)
(* Thus there are none *)
Lemma yoyo:
 yo -> False.
Proof.
 intros.
 (** well, that didn’t work *)
 induction H.
 assumption.
 (** but that did! *)
Qed.

(* check out negation *)
(* It looks just like what we just did *)
Print not.

(* * Expression Syntax *)
(* Now let’s build a programming language! *)
(* We can define parts of a language *)
(* as an inductive datatype. *)

Inductive expr : Set :=
 (* A constant expression, like "3" or "0" *)
 Const : nat -> expr
 (* A program variable, like "x" or "foo" *)
 Var : string -> expr
 (* Adding expressions *)
 Add : expr -> expr -> expr
 (* Multiplying expressions *)
 Mul : expr -> expr -> expr
 (* Comparing expressions *)
 Cmp : expr -> expr -> expr.
 (** On paper, this would be written as a *)
 (** BNF grammar as:<<

Oct 07, 15 11:21 L03_annotated.v Page 1/11

Oct 07, 15 11:21 L03_annotated.v Page 2/11
expr ::= N | V | expr <+> expr | expr <*> expr | expr <?> expr
> (
while parsing is still an active research topic in some places, *)
(* feel free to ignore most of this, especially the stuff farther right *)
Notation "'C' X" := (Const X) (at level 80).
Notation "'V' X" := (Var X) (at level 81).
Notation "X <+> Y" := (Add X Y) (at level 83, left associativity).
Notation "X <*> Y" := (Mul X Y) (at level 82, left associativity).
Notation "X <?> Y" := (Cmp X Y) (at level 84, no associativity).
(* parsing is classic CS topic, but won’t say much more *)
(* we can write functions to analyze expressions *)
(* Here we’re simply going to count the number of const subexpressions in a given expression *)
Fixpoint nconsts (e: expr) : nat :=
match e
| Const _ => 1 (* same as S O *)
| Var _ => 0 (* same as O *)
| Add e1 e2 => nconsts e1 + nconsts e2
| Mul e1 e2 => nconsts e1 + nconsts e2
| Cmp e1 e2 => nconsts e1 + nconsts e2 end.
(* Coq also provides existential quantifiers *)
(* We prove them by providing concrete examples *)
Lemma expr_w_3_consts: exists e, nconsts e = 3. Proof. exists (C 3 <+> C 2 <+> C 1). Qed.
(* we know how to do it pretty well in a lot of cases *)
(* we can define our own relations to encode properties of expressions *)
Inductive has_const : expr −> Prop :=
| hc_const : forall c, has_const (Const c)| hc_add_l : forall e1 e2, has_const e1 −> has_const (Add e1 e2)| hc_add_r : forall e1 e2, has_const e2 −> has_const (Add e1 e2)| hc_mul_l : forall e1 e2, has_const e1 −> has_const (Mul e1 e2)| hc_cmp : forall e1 e2, has_const e1 −> has_const (Cmp e1 e2)
(* Each of the constructors corresponds to how you can prove this fact *)

(** Coq provides mechanism to define
your own notation which we can use to get "concrete syntax" *)
Notation "'C' X" := (Const X) (at level 80).
Notation "'V' X" := (Var X) (at level 81).
Notation "X <+> Y" := (Add X Y) (at level 83, left associativity).
Notation "X <*> Y" := (Mul X Y) (at level 82, left associativity).
Notation "X <?> Y" := (Cmp X Y) (at level 84, no associativity).
(*)
(* feel free to ignore most of this, especially the stuff farther right *)
(* we know how to do it pretty well in a lot of cases *)
(* we can define our own relations to encode properties of expressions *)
(* we can define our own relations to encode properties of expressions *)
Inductive has_const : expr −> Prop :=
| hc_const : forall c, has_const (Const c)| hc_add_l : forall e1 e2, has_const e1 −> has_const (Add e1 e2)| hc_add_r : forall e1 e2, has_const e2 −> has_const (Add e1 e2)| hc_mul_l : forall e1 e2, has_const e1 −> has_const (Mul e1 e2)

(** Coq provides mechanism to define
your own notation which we can use
to get "concrete syntax" *)
Notation "'C' X" := (Const X) (at level 80).
Notation "'V' X" := (Var X) (at level 81).
Notation "X <+> Y" := (Add X Y) (at level 83, left associativity).
Notation "X <*> Y" := (Mul X Y) (at level 82, left associativity).
Notation "X <?> Y" := (Cmp X Y) (at level 84, no associativity).
(** parsing is classic CS topic, but won’t say much more *)
(** while parsing is still an active research topic in some places, *)
(** we know how to do it pretty well in a lot of cases *)
(** we can write functions to analyze expressions *)
(** Here we’re simply going to count the number of const subexpressions in a given expression *)
Fixpoint nconsts (e: expr) : nat :=
match e
| Const _ => 1 (* same as S O *)
| Var _ => 0 (* same as O *)
| Add e1 e2 => nconsts e1 + nconsts e2
| Mul e1 e2 => nconsts e1 + nconsts e2
| Cmp e1 e2 => nconsts e1 + nconsts e2 end.

(** Coq provides mechanism to define
your own notation which we can use to get "concrete syntax" *)
Notation "'C' X" := (Const X) (at level 80).
Notation "'V' X" := (Var X) (at level 81).
Notation "X <+> Y" := (Add X Y) (at level 83, left associativity).
Notation "X <*> Y" := (Mul X Y) (at level 82, left associativity).
Notation "X <?> Y" := (Cmp X Y) (at level 84, no associativity).
(** parsing is classic CS topic, but won’t say much more *)
(** while parsing is still an active research topic in some places, *)
(** we know how to do it pretty well in a lot of cases *)
(** we can define our own relations to encode properties of expressions *)
Inductive has_const : expr −> Prop :=
| hc_const : forall c, has_const (Const c)| hc_add_l : forall e1 e2, has_const e1 −> has_const (Add e1 e2)| hc_add_r : forall e1 e2, has_const e2 −> has_const (Add e1 e2)| hc_mul_l : forall e1 e2, has_const e1 −> has_const (Mul e1 e2)
forall e1 e2, has_const e1 → has_const (Mul e1 e2)
| hc_mul_r :
 forall e1 e2, has_const e2 → has_const (Mul e1 e2)
| hc_cmp_l :
 forall e1 e2, has_const e1 → has_const (Cmp e1 e2)
| hc_cmp_r :
 forall e1 e2, has_const e2 → has_const (Cmp e1 e2).

(** Are add and mul commutative? *)
(** Not as just syntax *)

Lemma add_comm :
 forall e1 e2, Add e1 e2 = Add e2 e1 → False.
Proof.
 intros.
 (** specialize gives concrete arguments to hypotheses with forall *)
 specialize (H (Const 0) (Const 1)).
 (** inversion is smart *)
 inversion H.
Qed.

(** Similarly, we can define a relation for having a variable *)

Inductive has_var : expr → Prop :=
| hv_var :forall s, has_var (Var s)
| hv_add_l :
 forall e1 e2, has_var e1 → has_var (Add e1 e2)
| hv_add_r :
 forall e1 e2, has_var e2 → has_var (Add e1 e2)
| hv_mul_l :
 forall e1 e2, has_var e1 → has_var (Mul e1 e2)
| hv_mul_r :
 forall e1 e2, has_var e2 → has_var (Mul e1 e2)
| hv_cmp_l :
 forall e1 e2, has_var e1 → has_var (Cmp e1 e2)
| hv_cmp_r :
 forall e1 e2, has_var e2 → has_var (Cmp e1 e2).

(** we could write boolean functions to check the same properties *)
(** orb is just or for booleans *)

Fixpoint hasConst (e: expr) : bool :=
 match e with
 | Const _ => true
 | Var _ => false
 | Add e1 e2 => orb (hasConst e1) (hasConst e2)
 | Mul e1 e2 => orb (hasConst e1) (hasConst e2)
 | Cmp e1 e2 => orb (hasConst e1) (hasConst e2)
end.

(** the Bool library provides "||" as a notation for orb *)

Fixpoint hasVar (e: expr) : bool :=
 match e with
 | Const _ => false
 | Var _ => true
 | Add e1 e2 => hasVar e1 || hasVar e2
 | Mul e1 e2 => hasVar e1 || hasVar e2
 | Cmp e1 e2 => hasVar e1 || hasVar e2
end.

(** That looks way easier! However, as the quarter progresses, we’ll see that sometime defining a property as an inductive relation is more convenient *)

(** We can prove that our relational and functional versions agree *)
(** This property is that the hasConst function is COMPLETE with respect to the relation *)
(** Thus, anything that satisfies the relation evaluates to "true" with the function *)

Lemma has_const_hasConst:
 forall e, has_const e → hasConst e = true.
Proof.
 intros.
 induction e.
 + simpl. reflexivity. + simpl. (** uh oh, trying to prove something false! *)
 (** it’s OK though because we have a bogus hyp! *)
 inversion H.
 (** inversion lets us do case analysis on how a hypothesis of an inductive type may have been built. In this case, there is no way to build a value of type “has_const (Var s)”, so we complete the proof of this subgoal for all zero ways of building such a value *)
 + (** here we use inversion to consider how a value of type “has_const (Add e1 e2)” could have been built *)
 inversion H.
 - (** built with hc_add_l *)
 subst. (** subst rewrites all equalities it can *)
 apply IHe1 in H1.
 simpl. (** remember notation "||" is same as orb *)
 rewrite H1. simpl. reflexivity.
 - (** built with hc_add_r *)
 subst. apply IHe2 in H1.
 simpl. rewrite H1. (** use fact that orb is commutative *)
 rewrite orb_comm.
 (** you can find this by turning on auto completion or using a search query *)
 SearchAbout orb.
 simpl. reflexivity.
 + (** Mul case is similar *)
 inversion H; simpl; subst.
Lemma hasConst_has_const:
\forall e, \ hasConst e = true \rightarrow \ has_const e.
Proof.
 intros.
 induction e.
 + simpl.
 (** we can prove this case with a constructor *)
 constructor. (** this uses has_const *)
 + (** Uh oh, no constructor for has_const can possibly produce a value of our goal type! It's OK though because we have a bogus hypothesis. *)
 simpl in \ H.
 discriminate.
 + (** now do Add case *)
 simpl in \ H.
 (** either e1 or e2 had a Const *)
 apply orb_true_iff in \ H.
 (** consider cases for \ H *)
 destruct \ H.
 - (** e1 had a Const *)
 apply hc_add_l.
 apply IHe1.
 assumption.
 - (** e2 had a Const *)
 apply hc_add_r.
 apply IHe2.
 assumption.
 + (** Mul case is similar *)
 simpl in \ H.
 (** constructor will screw up and try hc_mul_l again! *)
 (* constructor is rather dim *)
 constructor. (** OOPS! *)
 Undo.
 apply hc_mul_r. apply IHe2. assumption.
 + (** Cmp case is similar *)
 simpl in \ H.
 apply orb_true_iff in \ H.
 (** constructor will work again! (*)
 (** constructor will use hc_mul_l *)
 constructor. apply IHe1. assumption.
 (** constructor will work again! (*)
 (** constructor is rather dim *)
 constructor. (** OOPS! *)
 Undo.
 apply hc_mul_r. apply IHe2. assumption.
Qed.

Lemma has_const_iff_hasConst:
\forall e, \ has_const e \iff \ hasConst e = true.
Proof.
 intros.
 split.
 + (** \rightarrow *)
 apply hasConst_has_const.
 + (** \leftarrow *)
 apply hasConst_has_const.
Qed.
reflexivity.
Qed.

(** Now the other direction of the false case *)

Lemma false_hasConst_hasConst:
 forall e, hasConst e = false -> ~ has_constr e.
Proof.
 unfold not. intros. induction e; (* crunch down everything in subgoals *)
 simpl in *. + discriminate. + inversion H0. + apply orb_false_iff in H.
 (* get both proofs out of a conjunction by destructing it *)
 destruct H.
 (** case analysis on H0 *)
 (** DISCUSS: how do we know to do this? *)
 inversion H0.
 - subst. auto. (** auto will chain things for us *)
 - subst. auto.
 + (** Mul case similar *)
 apply orb_false_iff in H; destruct H.
 inversion H0; subst; auto.
 + (** Cmp case similar *)
 apply orb_false_iff in H; destruct H.
 inversion H0; subst; auto.
Qed.

(** Since we've proven the iff for the true case *)
(** We can use it to prove the false case *)

This is the same lemma as above, but using our previous results *)

Lemma false_hasConst_hasConst':
 forall e, hasConst e = false -> ~ has_constr e.
Proof.
 intros. rewriting has Const hasConst in H0.
 discriminate.
Qed.

(** We can also do all the same sorts of proofs for has_var and hasVar *)

Lemma has_var_hasVar:
 forall e, has_var e -> hasVar e = true.
Proof.
 (** TODO: try this without copying from above *)
Admitted.

Lemma hasVar_has_var:
 forall e, hasVar e = true -> has_var e.
Proof.
 (** TODO: try this without copying from above *)
Admitted.

Lemma has_var_iff_hasVar:
 forall e, has_var e <> hasVar e = true.
Proof.
 (** TODO: try this without copying from above *)
Admitted.

(** We can also prove things about expressions *)

Lemma expr_bottoms_out:
 forall e, has_const e \/ has_var e.
Proof.
 intros. induction e.
 + (** prove left side of disjunction *)
 left.
 + (** prove right side of disjunction *)
 right.
 + (** case analysis on IHe1 *)
 destruct IHe1.
 - left. constructor. assumption.
 - right. constructor. assumption.
 + (** Mul case similar *)
 destruct IHe1.
 - left. constructor. assumption.
 - right. constructor. assumption.
 + (** Cmp case similar *)
 destruct IHe1.
 - left. constructor. assumption.
 - right. constructor. assumption.
Qed.

(** we could have gotten some of the has_constr lemmas by being a little clever!
 (but then we wouldn't have learned as many tactics ;))

Lemma has_const_hasConst':
 forall e, has_const e -> hasConst e = true.
Proof.
 intros.
 induction H; simp; auto.
 + rewrite orb_true_iff. auto.
Qed.

(** or even better *)

Lemma has_const_hasConst'':
 forall e, has_const e -> hasConst e = true.
Proof.
 intros.
 induction H; simp; auto.
 + rewrite orb_true_iff. auto.
Qed.

Lemma not_has_const_hasConst'':
 forall e, ~ has_const e -> hasConst e = false.
Proof.
Lemma false_hasConst_hasConst'':
 forall e,
 hasConst e = false ->
 ~ has_const e.
Proof.
 unfold not; intros.
 destruct (hasConst e) eqn:?.
 - discriminate.
 - rewrite hasConst_hasConst in Hqb.
 (** NOTE: we got another subgoal! **)
 * discriminate.
 * assumption.
Qed.