
(* * * Lecture 02 Exercises *)

(* * infer some type arguments automatically *)
Set Implicit Arguments.

Inductive list (A: Set) : Set :=
| nil : list A
| cons : A −> list A −> list A.

Arguments nil {A}.

Fixpoint length (A: Set) (l: list A) : nat :=
 match l with
 | nil => O
 | cons x xs => S (length xs)
 end.

(* * add one list to the end of another *)
Fixpoint app (A: Set) (l1: list A) (l2: list A) : list A :=
 match l1 with
 | nil => l2
 | cons x xs => cons x (app xs l2)
 end.

Theorem app_nil:
 forall A (l: list A),
 app l nil = l.
Proof.
 intros.
 induction l.
 + simpl. reflexivity.
 + simpl. rewrite IHl. reflexivity.
Qed.

Theorem app_assoc:
 forall A (l1 l2 l3: list A),
 app (app l1 l2) l3 = app l1 (app l2 l3).
Proof.
 intros.
 induction l1.
 + simpl. reflexivity.
 + simpl. rewrite IHl1. reflexivity.
Qed.

(* * simple but inefficient way to reverse a list *)
Fixpoint rev (A: Set) (l: list A) : list A :=
 match l with
 | nil => nil
 | cons x xs => app (rev xs) (cons x nil)
 end.

(* * tail recursion is faster, but more complicated *)
Fixpoint fast_rev_aux (A: Set) (l: list A) (acc: list A) : list A :=
 match l with
 | nil => acc
 | cons x xs => fast_rev_aux xs (cons x acc)
 end.

Definition fast_rev (A: Set) (l: list A) : list A :=
 fast_rev_aux l nil.

(* * add an element to the end of a list *)
Fixpoint snoc (A: Set) (l: list A) (x: A) : list A :=
 match l with
 | nil => cons x nil
 | cons y ys => cons y (snoc ys x)
 end.

Theorem snoc_app_singleton:

Oct 05, 15 8:32 Page 1/2L02_exercise.v
 forall A (l: list A) (x: A),
 snoc l x = app l (cons x nil).
Proof.
 (* * TODO *)
Admitted.

Theorem app_snoc_l:
 forall A (l1: list A) (l2: list A) (x: A),
 app (snoc l1 x) l2 = app l1 (cons x l2).
Proof.
 (* * TODO *)
Admitted.

Theorem app_snoc_r:
 forall A (l1: list A) (l2: list A) (x: A),
 app l1 (snoc l2 x) = snoc (app l1 l2) x.
Proof.
 (* * TODO *)
Admitted.

(* * simple but inefficient way to reverse a list *)
Fixpoint rev_snoc (A: Set) (l: list A) : list A :=
 match l with
 | nil => nil
 | cons x xs => snoc (rev_snoc xs) x
 end.

Lemma fast_rev_ok_snoc:
 forall A (l: list A),
 fast_rev l = rev_snoc l.
Proof.
 (* * TODO −− you will need to define a helper lemma
 very similar to how we proved fast_ref_ok *)
Admitted.

(* * useful in proving rev_length below *)
Lemma plus_1_S:
 forall n,
 plus n 1 = S n.
Proof.
 intros.
 induction n.
 + simpl. reflexivity.
 + simpl. rewrite IHn. reflexivity.
Qed.

Lemma rev_length:
 forall A (l: list A),
 length (rev l) = length l.
Proof.
 (* * TODO −− you will need to define a helper lemma
 that relates length and app *)
Admitted.

Lemma rev_involutive:
 forall A (l: list A),
 rev (rev l) = l.
Proof.
 (* * TODO −− you will need to define a helper lemma
 that relates rev and app, its proof should
 use app_assoc *)
Admitted.

Oct 05, 15 8:32 Page 2/2L02_exercise.v

Printed by Zach Tatlock

Thursday October 22, 2015 1/1L02/L02_exercise.v

