(* Lecture 02 Exercises *)

(* infer some type arguments automatically *)

Set Implicit Arguments.

Inductive list (A: Set) : Set :=
| nil : list A |
| cons : A -> list A -> list A. |

Arguments nil A.

Fixpoint length (A: Set) (l: list A) : nat :=
match l with
| nil => O |
| cons x xs => S (length xs) |
end.

(* add one list to the end of another *)

Fixpoint app (A: Set) (l1: list A) (l2: list A) : list A :=
match l1 with
| nil => l2 |
| cons x xs => cons x (app xs l2) |
end.

Theorem app_nil:
forall A (l: list A), app l nil = l. Proof. intros. induction l. + simpl. reflexivity. + simpl. rewrite IHl. reflexivity. Qed.

Theorem app_assoc:
forall A (l1 l2 l3: list A), app (app l1 l2) l3 = app l1 (app l2 l3). Proof. intros. induction l1. + simpl. reflexivity. + simpl. rewrite IHl1. reflexivity. Qed.

(* simple but inefficient way to reverse a list *)

Fixpoint rev (A: Set) (l: list A) : list A :=
match l with
| nil => nil |
| cons x xs => app (rev xs) (cons x nil) |
end.

Theorem fast_rev_ok_snoc:
forall A (l: list A), fast_rev l = rev_snoc l. Proof. (* TODO −− you will need to define a helper lemma very similar to how we proved fast_ref_ok *)
Admitted.

(* useful in proving rev_length below *)

Lemma plus_1_S:
forall n, plus n 1 = S n. Proof. intros. induction n. + simpl. reflexivity. + simpl. rewrite IHn. reflexivity. Qed.

Lemma rev_length:
forall A (l: list A), length (rev l) = length l. Proof. (* TODO −− you will need to define a helper lemma that relates length and app *)
Admitted.

(* simple but inefficient way to reverse a list *)

Fixpoint rev_snoc (A: Set) (l: list A) : list A :=
match l with
| nil => nil |
| cons x xs => cons x (app xs (snoc l x)) |
end.

Lemma fast_rev_ok_snoc:
forall A (l: list A), fast_rev l = rev_snoc l. Proof. (* TODO −− you will need to define a helper lemma that relates rev and app, its proof should use app_assoc *)
Admitted.

(* useful in proving rev_length below *)

Lemma rev_involutive:
forall A (l: list A), rev (rev l) = l. Proof. (* TODO −− you will need to define a helper lemma that relates rev and app *)
Admitted.

Definition fast_rev (A: Set) (l: list A) : list A :=
fast_rev_aux l nil.

Theorem snoc_app_singleton:
forall A (l: list A) (x: A), snoc l x = app l (cons x nil). Proof. (* TODO *)
Admitted.