Oct 07, 15 8:17 L02_annotated.v	Page 1/7	Oct 07, 15 8:17 L02_annotated.v Page	2/7
(** * Lecture 02 *)		Lemma map_length: forall (A B: Set) (f: A -> B) (l: list A),	
(** infer some type arguments automatically *) Set Implicit Arguments.		length (map f l) = length l. Proof. intros.	
<pre>Inductive list (A: Set) : Set := nil : list A cons : A -> list A -> list A.</pre>		induction 1. + simpl. reflexivity. + simpl.	
<pre>Fixpoint length (A: Set) (l: list A) : nat := match l with</pre>		<pre>(** Replace "length (map f l)" with "length l" *) rewrite IH1. reflexivity. Qed. (** Induction is what we use to prove properties about infinite sets.</pre>	
(** so far, Coq will not infer the type argument for nil:		We do this by proving that the property holds on the "base cases"nonre ive constructors. For example, (0 : nat) and (nil : list A) are base cases.	curs
Check (cons 1 nil).		Then, we prove that the property is *preserved* by the recursive construs.	ctor
<pre>Error: The term "nil" has type "forall A : Set, list A" while it is expected to have type "list nat". >> *)</pre>		To prove the inductive case for a property P of nats, we'll need to prov forall n, P n -> P (S n). For lists, it will be forall 1 x, P 1 -> P (cons x 1).	e
Check (cons 1 (nil nat)).		*)	
(** we can tell Coq to always try though *) Arguments nil {A}.		Definition compose (A B C: Set) (f: B -> C) (g: A -> B) : A -> C :=	
Check (cons 1 nil).		$fun x \Rightarrow f (g x).$	
<pre>Fixpoint countdown (n: nat) := match n with</pre>		<pre>Lemma map_map_compose: forall (A B C: Set) (g: A -> B) (f: B -> C) (l: list A), map f (map g l) = map (compose f g) l. Proof. intros.</pre>	
Eval cbv in (countdown 0). Eval cbv in (countdown 3). Eval cbv in (countdown 10).		<pre>induction 1. + simpl. reflexivity. + simpl. rewrite IH1. (** need to "unfold" compose to simpl *)</pre>	
<pre>Fixpoint map (A B: Set) (f: A -> B) (l: list A) : list B := match l with nil => nil</pre>		unfold compose. reflexivity. Qed.	
<pre> cons x xs => cons (f x) (map f xs) end.</pre>		<pre>Fixpoint foldr (A B: Set) (f: A -> B -> B)</pre>	
Eval cbv in (map (plus 1) (countdown 3)). Eval cbv in (map (fun _ => true) (countdown 3)).		nil => b cons x xs => f x (foldr f xs b) end.	
<pre>Definition is_zero (n: nat) : bool := match n with</pre>		(** foldr f (cons 1 (cons 2 (cons 3 nil))) x > f 1 (f 2 (f 3 x))	
Eval cbv in (map is_zero (countdown 3)).		Notice how foldr replaces "cons" with "f" and "nil" with "x".	
<pre>Fixpoint is_even (n: nat) : bool := match n with</pre>		*) (** "foldr plus" is a summation. Let's sum the values from 0 to 10 *) Eval cbv in (foldr plus (countdown 10) 0).	
Eval cbv in (map is_even (countdown 3)).		<pre>Fixpoint fact (n: nat) : nat := match n with 0 => 1</pre>	
(** Note that this proof uses bullets (+). See the course web page for more information about bullets. *)		S m => mult n (fact m) end.	

Printed by Zach Tatlock

Oct 07, 15 8:17 L02_annotated.v Page 3/7	Oct 07, 15 8:17 L02_annotated.v Page 4/7
Eval cbv in (fact 0). Eval cbv in (fact 1). Eval cbv in (fact 2). Eval cbv in (fact 3). Eval cbv in (fact 4).	<pre>+ simpl. reflexivity. + simpl. rewrite IHl. reflexivity. Qed. (** app is associative, meaning we can freely re-associate (move parens around) *)</pre>
<pre>Definition fact' (n: nat) : nat := match n with O => 1 S m => foldr mult (map (plus 1) (countdown m)) 1 end.</pre>	<pre>Theorem app_assoc: forall A (11 12 13: list A), app (app 11 12) 13 = app 11 (app 12 13). Proof. intros. induction 11.</pre>
Eval cbv in (fact' 0). Eval cbv in (fact' 1). Eval cbv in (fact' 2). Eval cbv in (fact' 3). Eval cbv in (fact' 4).	<pre>+ simpl. reflexivity. + simpl. rewrite IH11. reflexivity. Qed. (** simple but inefficient way to reverse a list *) Fixpoint rev (A: Set) (1: list A) : list A :=</pre>
<pre>Lemma fact_fact': forall n, fact n = fact' n. Proof. (** challenge problem *)</pre>	<pre>match l with</pre>
<pre>Admitted. (** we can also define map using fold *) Definition map' (A B: Set) (f: A -> B) (l: list A) : list B := foldr (fun x acc => cons (f x) acc) l nil.</pre>	"acc" is short for "accumulator". we "accumulate" with each recursive call. note that fast_rev_aux calls itself in tail position, i.e., as its result. tail recursion is faster because compilers for functional programming langua
<pre>Lemma map_map': forall (A B: Set) (f: A -> B) (l: list A), map f l = map' f l. Proof. intros. induction l. + simpl. unfold map'. simpl. reflexivity.</pre>	<pre>ges often do tail-call optimization ("TCO"), in which stack frames are re-used by recursive calls. *) Fixpoint fast_rev_aux (A: Set) (l: list A) (acc: list A) : list A := match l with nil => acc acc acc u use fact you out yo (cons y cons)</pre>
<pre>+ simpl. rewrite IH1. (** again, need to unfold so simpl can work *) unfold map'. simpl. reflexivity. (** note: very sensitive to order of rewrite and unroll! *) Qed.</pre>	<pre> cons x xs => fast_rev_aux xs (cons x acc) end. Definition fast_rev (A: Set) (l: list A) : list A := fast_rev_aux l nil. (** let's make sure we got that right *)</pre>
<pre>(** another flavor of fold. what's the difference? when would you use one or th other? *) Fixpoint foldl (A B: Set) (f: A -> B -> B)</pre>	<pre>fast_rev l = rev l. Proof. intros. induction l. + simpl. (** reduces rev, but does nothing to rev_fast *) unfold fast_rev. (** unfold fast_rev to fast_rev_aux *)</pre>
<pre>end. (** add one list to the end of another *) Fixpoint app (A: Set) (l1: list A) (l2: list A) : list A := match l1 with</pre>	<pre>simpl. (** now we can simplify the term *) reflexivity. (** TIP: if simpl doesn't work, try unfolding! *) + unfold fast_rev in *. (** this looks like it could be trouble *) simpl. rewrite <- IH1. (** STUCK! need to know about the rev_aux accumulator (acc) *) (** TIP: if your IH seems weak, try proving something more general *) bort</pre>
<pre>Eval cbv in (app (cons 1 (cons 2 nil)) (cons 3 nil)). Theorem app_nil: forall A (1: list A), app 1 nil = 1. Proof. intros. induction 1.</pre>	Abort. Lemma fast_rev_aux_ok: forall A (l1 l2: list A), fast_rev_aux ll l2 = app (rev l1) l2. Proof. intros. induction l1. + simpl. reflexivity.

Printed by Zach Tatlock

Oct 07, 15 8:17	L02_annotated.v	Page 5/7	Oct 07, 15 8:17	L02_annotated.v	Page 6/7
+ simpl.			end.		
(** STUCK AGAIN! need t (** TIP: if your IH see Abort.	co know for *any* 12 *) ems weak, only intro up to the induc	tion variable *)	Theorem snoc_app_single forall A (1: list A)	(x: A),	
<pre>Lemma fast_rev_aux_ok: forall A (l1 l2: list A), fast_rev_aux l1 l2 = app Proof. intros A l1. induction l1.</pre>	(rev 11) 12.		<pre>snoc l x = app l (con Proof. intros. induction l. + simpl. reflexivity. + simpl. rewrite IHL. Qed.</pre>		
	ity. ion hypothesis (IHl1) here with the why is this called "generalizing" th		<pre>Theorem app_snoc_1: forall A (l1: list A) app (snoc l1 x) l2 =</pre>		
*) intros. simpl. rename 12 into foo. (** Note that we can re d	ewrite by IHll even though it is uni	versally quantifie	<pre>Proof. intros. induction 11. + simpl. reflexivity. + simpl. rewrite IH11</pre>		
	orall). Coq will figure out what to	replace "12" with	Qed.	. Terreativity.	
<pre>(cons a foo). *) rewrite IH11. rewrite a simpl. reflexivity. Qed.</pre>	app_assoc.		<pre>Theorem app_snoc_r: forall A (l1: list A) app ll (snoc l2 x) = Proof. intros. induction l1.</pre>		
(** now we can prove rev_ok Lemma rev_ok: forall A (1: list A),	x as a special case of rev_aux_ok *)		+ simpl. reflexivity. + simpl. rewrite IH11 Qed.	-	
<pre>fast_rev l = rev l. Proof. intros. unfold fast_rev. rewrite fast_rev_aux_ok. rewrite app_nil. reflexivity.</pre>				ent way to reverse a list *) et) (l: list A) : list A := rev_snoc xs) x	
Qed.			Lemma fast_rev_aux_ok_s forall A (11 12: list fast_rev_aux 11 12 = Proof.	A),	
(/ ~ } o~', ~	~ ~~~ .~~~		<pre>intros A l1. induction l1. + intros. simpl. refl + intros. simpl. rewrite IH11. rewrite app_snoc_1. reflexivity.</pre>	exivity.	
; \ ~~~ ; {~~~	~~~		Qed.		
;:::' ·_ ~~ ;::' · ~			<pre>Lemma fast_rev_ok_snoc: forall A (l: list A), fast_rev l = rev_snoc Proof. intros. unfold fast_rev. rewrite fast_rev_aux_ rewrite app_nil. reflexivity. Qed.</pre>		
>> *) (** add an element to the e Fixpoint snoc (A: Set) (1:			Lemma length_app: forall A (11 12: list	A), plus (length 11) (length 12).	
<pre>match l with</pre>			Proof. intros. induction 11.	pius (iength ii) (iength iz).	

L02_annotated.v	Page 7/7
eflexivity.	
flexivity.	
app. S.	
ev 12) (rev 11). . reflexivity.	
	eflexivity. flexivity. 1. app. S. ty. év 12) (rev 11). . reflexivity. ewrite app_assoc. flexivity.