
(* * * Lecture 02 *)

(* * infer some type arguments automatically *)
Set  Implicit Arguments.

Inductive list (A: Set ) : Set  :=
| nil : list A
| cons : A −> list A −> list A.

Fixpoint length (A: Set ) (l: list A) : nat :=
  match l with
  | nil => O
  | cons x xs => S (length xs)
  end.

(* * so far, Coq will not infer the type argument for nil:
<<
Check (cons 1 nil).

Error: The term "nil" has type "forall A : Set, list A"
 while it is expected to have type "list nat".
>>
*)

Check (cons 1 (nil nat)).

(* * we can tell Coq to always try though *)
Arguments nil {A}.

Check (cons 1 nil).

Fixpoint countdown (n: nat) :=
  match n with
  | O => cons n nil
  | S m => cons n (countdown m)
  end.

Eval cbv in (countdown 0).
Eval cbv in (countdown 3).
Eval cbv in (countdown 10).

Fixpoint map (A B: Set ) (f: A −> B) (l: list A) : list B :=
  match l with
  | nil => nil
  | cons x xs => cons (f x) (map f xs)
  end.

Eval cbv in (map (plus 1) (countdown 3)).
Eval cbv in (map (fun _ => true) (countdown 3)).

Definition is_zero (n: nat) : bool :=
  match n with
  | O => true
  | S m => false
  end.

Eval cbv in (map is_zero (countdown 3)).

Fixpoint is_even (n: nat) : bool :=
  match n with
  | O => true
  | S O => false
  | S (S m) => is_even m
  end.

Eval cbv in (map is_even (countdown 3)).

(* * Note that this proof uses bullets (+). 
   See the course web page for more information about bullets. *)

Oct 07, 15 8:17 Page 1/7L02_annotated.v
Lemma map_length:
  forall (A B: Set ) (f: A −> B) (l: list A),
  length (map f l) = length l.
Proof.
  intros.
  induction l.
  + simpl. reflexivity.
  + simpl.
    (* * Replace "length (map f l)" with "length l"  *)
    rewrite IHl.
    reflexivity.
Qed.

(* * Induction is what we use to prove properties about infinite sets.
    We do this by proving that the property holds on the "base cases"−−nonrecurs
ive constructors.
    For example, (O : nat) and (nil : list A) are base cases.
    Then, we prove that the property is *preserved* by the recursive constructor
s.
    To prove the inductive case for a property P of nats, we’ll need to prove
      forall n, P n −> P (S n).
    For lists, it will be
      forall l x, P l −> P (cons x l).
 *)

Definition compose (A B C: Set )
                   (f: B −> C)
                   (g: A −> B)
                   : A −> C :=
  fun x => f (g x).

Lemma map_map_compose:
  forall (A B C: Set )
         (g: A −> B) (f: B −> C) (l: list A),
  map f (map g l) = map (compose f g) l.
Proof.
  intros.
  induction l.
  + simpl. reflexivity.
  + simpl. rewrite IHl.
    (* * need to "unfold" compose to simpl *)
    unfold compose. reflexivity.
Qed.

Fixpoint foldr (A B: Set ) (f: A −> B −> B)
               (l: list A) (b: B) : B :=
  match l with
  | nil => b
  | cons x xs => f x (foldr f xs b)
  end.

(* *
  foldr f (cons 1 (cons 2 (cons 3 nil))) x
  −−>
  f 1 (f 2 (f 3 x))

  Notice how foldr replaces "cons" with "f" and "nil" with "x".
*)

(* * "foldr plus" is a summation.
    Let’s sum the values from 0 to 10
 *)
Eval cbv in (foldr plus (countdown 10) 0).

Fixpoint fact (n: nat) : nat :=
  match n with
  | O => 1
  | S m => mult n (fact m)
  end.

Oct 07, 15 8:17 Page 2/7L02_annotated.v

Printed by Zach Tatlock

Thursday October 22, 2015 1/4L02/L02_annotated.v



Eval cbv in (fact 0).
Eval cbv in (fact 1).
Eval cbv in (fact 2).
Eval cbv in (fact 3).
Eval cbv in (fact 4).

Definition fact’ (n: nat) : nat :=
  match n with
  | O => 1
  | S m => foldr mult (map (plus 1) (countdown m)) 1
  end.
  

Eval cbv in (fact’ 0).
Eval cbv in (fact’ 1).
Eval cbv in (fact’ 2).
Eval cbv in (fact’ 3).
Eval cbv in (fact’ 4).

Lemma fact_fact’:
  forall n,
  fact n = fact’ n.
Proof.
  (* * challenge problem *)
Admitted.

(* * we can also define map using fold *)
Definition map’ (A B: Set ) (f: A −> B) (l: list A) : list B :=
  foldr (fun x acc => cons (f x) acc) l nil.

Lemma map_map’:
  forall (A B: Set ) (f: A −> B) (l: list A),
  map f l = map’ f l.
Proof.
  intros.
  induction l.
  + simpl. unfold map’. simpl. reflexivity.
  + simpl. rewrite IHl.
    (* * again, need to unfold so simpl can work *) 
    unfold map’. simpl.
    reflexivity.
    (* * note: very sensitive to order of rewrite and unroll! *)
Qed.

(* * another flavor of fold. what’s the difference? when would you use one or the
 other? *)
Fixpoint foldl (A B: Set ) (f: A −> B −> B)
               (l: list A) (b: B) : B :=
  match l with
  | nil => b
  | cons x xs => foldl f xs (f x b)
  end.

(* * add one list to the end of another *)
Fixpoint app (A: Set ) (l1: list A) (l2: list A) : list A :=
  match l1 with
  | nil => l2
  | cons x xs => cons x (app xs l2)
  end.

Eval cbv in (app (cons 1 (cons 2 nil)) (cons 3 nil)).

Theorem app_nil:
  forall A (l: list A),
  app l nil = l.
Proof.
  intros.
  induction l.

Oct 07, 15 8:17 Page 3/7L02_annotated.v
  + simpl. reflexivity.
  + simpl. rewrite IHl. reflexivity.
Qed.

(* * app is associative, meaning we can freely re−associate (move parens around) 
*)
Theorem app_assoc:
  forall A (l1 l2 l3: list A),
  app (app l1 l2) l3 = app l1 (app l2 l3).
Proof.
  intros.
  induction l1.
  + simpl. reflexivity.
  + simpl. rewrite IHl1. reflexivity.
Qed.

(* * simple but inefficient way to reverse a list *)
Fixpoint rev (A: Set ) (l: list A) : list A :=
  match l with
  | nil => nil
  | cons x xs => app (rev xs) (cons x nil)
  end.

(* * tail recursion is faster, but more complicated.
    "acc" is short for "accumulator". we "accumulate" with each recursive call.
   
    note that fast_rev_aux calls itself in tail position, i.e., as its result.
    
    tail recursion is faster because compilers for functional programming langua
ges
     often do tail−call optimization ("TCO"), in which stack frames are 
     re−used by recursive calls.
 *)
Fixpoint fast_rev_aux (A: Set ) (l: list A) (acc: list A) : list A :=
  match l with
  | nil => acc
  | cons x xs => fast_rev_aux xs (cons x acc)
  end.

Definition fast_rev (A: Set ) (l: list A) : list A :=
  fast_rev_aux l nil.

(* * let’s make sure we got that right *)
Theorem rev_ok:
  forall A (l: list A),
  fast_rev l = rev l.
Proof.
  intros.
  induction l.
  + simpl. (* * reduces rev, but does nothing to rev_fast *)
    unfold fast_rev. (* * unfold fast_rev to fast_rev_aux *)
    simpl. (* * now we can simplify the term *)
    reflexivity.
    (* * TIP: if simpl doesn’t work, try unfolding! *)
  + unfold fast_rev in *.
    (* * this looks like it could be trouble... *)
    simpl. rewrite <− IHl.
    (* * STUCK! need to know about the rev_aux accumulator (acc) *)
    (* * TIP: if your IH seems weak, try proving something more general *)
Abort.

Lemma fast_rev_aux_ok:
  forall A (l1 l2: list A),
  fast_rev_aux l1 l2 = app (rev l1) l2.
Proof.
  intros.
  induction l1.
  + simpl. reflexivity.

Oct 07, 15 8:17 Page 4/7L02_annotated.v

Printed by Zach Tatlock

Thursday October 22, 2015 2/4L02/L02_annotated.v



  + simpl.
    (* * STUCK AGAIN! need to know for *any* l2 *)
    (* * TIP: if your IH seems weak, only intro up to the induction variable *)
Abort.

Lemma fast_rev_aux_ok:
  forall A (l1 l2: list A),
  fast_rev_aux l1 l2 = app (rev l1) l2.
Proof.
  intros A l1.
  induction l1.
  + intros. simpl. reflexivity.
  + (* * compare the induction hypothesis (IHl1) here with the one we had before.
        what’s different? why is this called "generalizing" the induction hypoth
esis?
     *)
    intros. simpl.
    rename l2 into foo.
    (* * Note that we can rewrite by IHl1 even though it is universally quantifie
d
         (i.e. there’s a forall ). Coq will figure out what to replace "l2" with
 in IHl1
         (cons a foo).
     *)
    rewrite IHl1. rewrite app_assoc.
    simpl.
    reflexivity.
Qed.

(* * now we can prove rev_ok as a special case of rev_aux_ok *)
Lemma rev_ok:
  forall A (l: list A),
  fast_rev l = rev l.
Proof.
  intros.
  unfold fast_rev.
  rewrite fast_rev_aux_ok.
  rewrite app_nil.
  reflexivity.
Qed.

(* * <<

                            ~−.
          ,,,;            ~−.~−.~−
         (.../           ~−.~−.~−.~−.~−.
         } o~‘,         ~−.~−.~−.~−.~−.~−.
         (/    \      ~−.~−.~−.~−.~−.~−.~−.
          ;    \    ~−.~−.~−.~−.~−.~−.~−.
         ;     {_.~−.~−.~−.~−.~−.~−.~
        ;:  .−~‘    ~−.~−.~−.~−.~−.
       ;.: :’    ._   ~−.~−.~−.~−.~−
        ;::‘−.    ’−._  ~−.~−.~−.~−
         ;::. ‘−.    ’−,~−.~−.~−.
          ’;::::.‘’’−.−’
            ’;::;;:,:’
               ’||"
               / |
             ~‘ ~"’

>> *)

(* * add an element to the end of a list *)
Fixpoint snoc (A: Set ) (l: list A) (x: A) : list A :=
  match l with
  | nil => cons x nil
  | cons y ys => cons y (snoc ys x)

Oct 07, 15 8:17 Page 5/7L02_annotated.v
  end.

Theorem snoc_app_singleton:
  forall A (l: list A) (x: A),
  snoc l x = app l (cons x nil).
Proof.
  intros.
  induction l.
  + simpl. reflexivity.
  + simpl. rewrite IHl. reflexivity.
Qed.

Theorem app_snoc_l:
  forall A (l1: list A) (l2: list A) (x: A),
  app (snoc l1 x) l2 = app l1 (cons x l2).
Proof.
  intros.
  induction l1.
  + simpl. reflexivity.
  + simpl. rewrite IHl1. reflexivity.
Qed.

Theorem app_snoc_r:
  forall A (l1: list A) (l2: list A) (x: A),
  app l1 (snoc l2 x) = snoc (app l1 l2) x.
Proof.
  intros.
  induction l1.
  + simpl. reflexivity.
  + simpl. rewrite IHl1. reflexivity.
Qed.

(* * simple but inefficient way to reverse a list *)
Fixpoint rev_snoc (A: Set ) (l: list A) : list A :=
  match l with
  | nil => nil
  | cons x xs => snoc (rev_snoc xs) x
  end.

Lemma fast_rev_aux_ok_snoc:
  forall A (l1 l2: list A),
  fast_rev_aux l1 l2 = app (rev_snoc l1) l2.
Proof.
  intros A l1.
  induction l1.
  + intros. simpl. reflexivity.
  + intros. simpl.
    rewrite IHl1.
    rewrite app_snoc_l.
    reflexivity.
Qed.

Lemma fast_rev_ok_snoc:
  forall A (l: list A),
  fast_rev l = rev_snoc l.
Proof.
  intros.
  unfold fast_rev.
  rewrite fast_rev_aux_ok_snoc.
  rewrite app_nil.
  reflexivity.
Qed.

Lemma length_app:
  forall A (l1 l2: list A),
  length (app l1 l2) = plus (length l1) (length l2).
Proof.
  intros.
  induction l1.

Oct 07, 15 8:17 Page 6/7L02_annotated.v

Printed by Zach Tatlock

Thursday October 22, 2015 3/4L02/L02_annotated.v



  + simpl. reflexivity.
  + simpl. rewrite IHl1. reflexivity.
Qed.

Lemma plus_1_S:
  forall n,
  plus n 1 = S n.
Proof.
  intros.
  induction n.
  + simpl. reflexivity.
  + simpl. rewrite IHn. reflexivity.
Qed.

Lemma rev_length:
  forall A (l: list A),
  length (rev l) = length l.
Proof.
  intros.
  induction l.
  + simpl. reflexivity.
  + simpl. rewrite length_app.
    simpl. rewrite plus_1_S.
    rewrite IHl. reflexivity.
Qed.

Lemma rev_app:
  forall A (l1 l2: list A),
  rev (app l1 l2) = app (rev l2) (rev l1).
Proof.
  intros.
  induction l1.
  + simpl. rewrite app_nil. reflexivity.
  + simpl. rewrite IHl1. rewrite app_assoc.
    reflexivity.
Qed.

Lemma rev_involutive:
  forall A (l: list A),
  rev (rev l) = l.
Proof.
  intros.
  induction l.
  + simpl. reflexivity.
  + simpl. rewrite rev_app.
    simpl. rewrite IHl. reflexivity.
Qed.

Oct 07, 15 8:17 Page 7/7L02_annotated.v

Printed by Zach Tatlock

Thursday October 22, 2015 4/4L02/L02_annotated.v


