CSE 505: Programming Languages

Lecture 12 — The Curry-Howard Isomorphism

Zach Tatlock Fall 2013

We are Language Designers!

What have we done?

- Define a programming language
 - we were fairly formal
 - still pretty close to OCaml if you squint real hard
- Define a type system
 - outlaw bad programs that "get stuck"
 - sound: no typable programs get stuck
 - incomplete: knocked out some OK programs too, ohwell

Elsewhere in the Universe (or the other side of campus)

What do logicians do?

- Define formal logics
 - tools to precisely state propositions
- ► Define proof systems
 - tools to figure out which propositions are true

Turns out, we did that too!

Punchline

We are accidental logicians!

The Curry-Howard Isomorphism

- ▶ Proofs : Propositions :: Programs : Types
- proofs are to propositions as programs are to types

Punchline... wat.

Woah. Back up a second. Logic?!

Let's trim down our (explicitly typed) simply-typed λ -calculus to:

$$\begin{array}{ll} e & ::= & x \mid \lambda x. \; e \mid e \; e \\ & \mid & (e,e) \mid e.1 \mid e.2 \\ & \mid & \mathsf{A}(e) \mid \mathsf{B}(e) \mid \mathsf{match} \; e \; \mathsf{with} \; \mathsf{A}x. \; e \mid \mathsf{B}x. \; e \\ \\ \tau & ::= & b \mid \tau \to \tau \mid \tau * \tau \mid \tau + \tau \end{array}$$

- Lambdas, Pairs, and Sums
- ightharpoonup Any number of base types b_1, b_2, \ldots
- No constants (can add one or more if you want)
- ► No fix

What good is this?!

Well, even sans constants, plenty of terms type-check with $\Gamma=\cdot$

 $\lambda x:b. x$

has type

 $b \rightarrow b$

$$\lambda x:b_1.\ \lambda f:b_1 \to b_2.\ f\ x$$

$$b_1
ightarrow (b_1
ightarrow b_2)
ightarrow b_2$$

$$\lambda x:b_1 \to b_2 \to b_3$$
. $\lambda y:b_2$. $\lambda z:b_1$. $x z y$

$$(b_1
ightarrow b_2
ightarrow b_3)
ightarrow b_2
ightarrow b_1
ightarrow b_3$$

$$\lambda x:b_1. (A(x), A(x))$$

$$b_1 \to ((b_1 + b_7) * (b_1 + b_4))$$

$$\lambda f{:}b_1
ightarrow b_3. \ \lambda g{:}b_2
ightarrow b_3. \ \lambda z{:}b_1 + b_2.$$
 (match z with Ax. $f\ x \mid \mathsf{Bx}.\ g\ x)$

$$(b_1
ightarrow b_3)
ightarrow (b_2
ightarrow b_3)
ightarrow (b_1 + b_2)
ightarrow b_3$$

$$\lambda x:b_1*b_2.\ \lambda y:b_3.\ ((y,x.1),x.2)$$

$$(b_1*b_2) \to b_3 \to ((b_3*b_1)*b_2)$$

Empty and Nonempty Types

Just saw a few "nonempty" types

- ightharpoonup au nonempy if closed term e has type au
- τ empty otherwise

Are there any empty types?

Sure!
$$b_1 \quad b_1 o b_2 \quad b_1 o (b_2 o b_1) o b_2$$

What does this one mean?

$$b_1 + (b_1 \rightarrow b_2)$$

I wonder if there's any way to distinguish empty vs. nonempty...

Ohwell, now for a totally irrelevant tangent!

Totally irrelevant tangent.

Propositional Logic

Suppose we have some set b of basic propositions b_1, b_2, \ldots

▶ e.g. "ML is better than Haskell"

Then, using standard operators \supset , \land , \lor , we can define formulas:

$$p ::= b \mid p \supset p \mid p \land p \mid p \lor p$$

▶ e.g. "ML is better than Haskell" ∧ "Haskell is not pure"

Some formulas are *tautologies*: by virtue of their structure, they are always true regardless of the truth of their constituent propositions.

ightharpoonup e.g. $p_1 \supset p_1$

Not too hard to build a *proof system* to establish tautologyhood.

Proof System

Wait a second...

Wait a second... ZOMG!

That's exactly our type system! Just erase terms, change each τ to a p, and translate \to to \supset , * to \land , + to \lor .

$$\Gamma \vdash e : au$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 * \tau_2} \quad \frac{\Gamma \vdash e : \tau_1 * \tau_2}{\Gamma \vdash e.1 : \tau_1} \quad \frac{\Gamma \vdash e : \tau_1 * \tau_2}{\Gamma \vdash e.2 : \tau_2}$$

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \mathsf{A}(e) : \tau_1 + \tau_2} \qquad \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \mathsf{B}(e) : \tau_1 + \tau_2}$$

$$\frac{\Gamma \vdash e : \tau_1 + \tau_2 \quad \Gamma, x \mathpunct{:} \tau_1 \vdash e_1 : \tau \quad \Gamma, y \mathpunct{:} \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \mathsf{match} \ e \ \mathsf{with} \ \mathsf{A} x. \ e_1 \mid \mathsf{B} y. \ e_2 : \tau}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x. \; e : \tau_1 \to \tau_2} \qquad \frac{\Gamma \vdash e_1 : \tau_2 \to \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 \; e_2 : \tau_1}$$

What does it all mean? The Curry-Howard Isomorphism.

- ► Given a well-typed closed term, take the typing derivation, erase the terms, and have a propositional-logic proof
- ► Given a propositional-logic proof, there exists a closed term with that type
- ▶ A term that type-checks is a proof it tells you exactly how to derive the logic formula corresponding to its type
- Constructive (hold that thought) propositional logic and simply-typed lambda-calculus with pairs and sums are the same thing.
 - Computation and logic are deeply connected
 - \triangleright λ is no more or less made up than implication
- Revisit our examples under the logical interpretation...

 $\lambda x:b. x$

is a proof that

 $b \rightarrow b$

$$\lambda x:b_1.\ \lambda f:b_1 \to b_2.\ f\ x$$

$$b_1 \to (b_1 \to b_2) \to b_2$$

$$\lambda x:b_1 \to b_2 \to b_3$$
. $\lambda y:b_2$. $\lambda z:b_1$. $x z y$

$$(b_1
ightarrow b_2
ightarrow b_3)
ightarrow b_2
ightarrow b_1
ightarrow b_3$$

$$\lambda x:b_1. (A(x), A(x))$$

$$b_1 o ((b_1 + b_7) * (b_1 + b_4))$$

$$\lambda f{:}b_1
ightarrow b_3. \ \lambda g{:}b_2
ightarrow b_3. \ \lambda z{:}b_1 + b_2.$$
 (match z with Ax. $f\ x \mid \mathsf{Bx}.\ g\ x)$

$$(b_1
ightarrow b_3)
ightarrow (b_2
ightarrow b_3)
ightarrow (b_1 + b_2)
ightarrow b_3$$

$$\lambda x:b_1*b_2.\ \lambda y:b_3.\ ((y,x.1),x.2)$$

$$(b_1*b_2) \to b_3 \to ((b_3*b_1)*b_2)$$

So what?

Because:

- This is just fascinating (glad I'm not a dog)
- Don't think of logic and computing as distinct fields
- Thinking "the other way" can help you know what's possible/impossible
- Can form the basis for theorem provers
- Type systems should not be ad hoc piles of rules!

So, every typed λ -calculus is a proof system for some logic...

Is STLC with pairs and sums a *complete* proof system for propositional logic? Almost...

Classical vs. Constructive

Classical propositional logic has the "law of the excluded middle":

$$\overline{\Gamma dash p_1 + (p_1 o p_2)}$$

(Think " $p+\lnot p$ " — also equivalent to double-negation $\lnot \lnot p
ightarrow p)$

STLC does not support this law; for example, no closed expression has type $b_1 + (b_1 \rightarrow b_2)$

Logics without this rule are called *constructive*. They're useful because proofs "know how the world is" and "are executable" and "produce examples"

Can still "branch on possibilities" by making the excluded middle an explicit assumption:

$$((p_1 + (p_1 \to p_2)) * (p_1 \to p_3) * ((p_1 \to p_2) \to p_3)) \to p_3$$

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers a and b such that a^b is rational.

Classical Proof:

Let $x = \sqrt{2}$. Either x^x is rational or it is irrational.

If x^x is rational, let $a=b=\sqrt{2}$, done.

If x^x is irrational, let $a=x^x$ and b=x. Since

$$\left(\sqrt{2}^{\sqrt{2}}
ight)^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2}\cdot\sqrt{2})}=\sqrt{2}^2=2$$
 , done.

Well, I guess we know there are some a and b satisfying the theorem... but which ones? LAME.

Constructive Proof:

Let
$$a=\sqrt{2}$$
, $b=\log_2 9$.

Since
$$\sqrt{2}^{\log_2 9} = 9^{\log_2 \sqrt{2}} = 9^{\log_2 (2^{0.5})} = 9^{0.5} = 3$$
, done.

To prove that something exists, we actually had to produce it. SWEET.

Zach Tatlock

CSE 505 Fall 2013, Lecture 12

Classical vs. Constructive, a Perspective

Constructive logic allows us to distinguish between things that classical logic just crudely lumps together.

Consider "P is true." vs. "It would be absurd if P were false."

ightharpoonup P vs. $\neg \neg P$

Those are different things, but classical logic is too clumsy to tell.

Our friends Gödel and Gentzen gave us this nice result:

P is provable in classical logic iff $\neg \neg P$ is provable in constructive logic.

Fix

A "non-terminating proof" is no proof at all.

Remember the typing rule for fix:

$$\frac{\Gamma \vdash e : \tau \to \tau}{\Gamma \vdash \mathsf{fix}\; e : \tau}$$

That let's us prove anything! Example: fix $\lambda x:b.$ x has type b

So the "logic" is inconsistent (and therefore worthless)

Related: In ML, a value of type 'a never terminates normally (raises an exception, infinite loop, etc.)

Last word on Curry-Howard

It's not just STLC and constructive propositional logic

Every logic has a corresponding typed λ calculus (and no consistent logic has something as "powerful" as **fix**).

► Example: When we add universal types ("generics") in a later lecture, that corresponds to adding universal quantification

If you remember one thing: the typing rule for function application is *modus ponens*