
CSE 505: Programming Languages

Lecture 12 — The Curry-Howard Isomorphism

Zach Tatlock
Fall 2013

We are Language Designers!

What have we done?
I Define a programming language

I we were fairly formal
I still pretty close to OCaml if you squint real hard

I Define a type system
I outlaw bad programs that “get stuck”
I sound: no typable programs get stuck
I incomplete: knocked out some OK programs too, ohwell

Zach Tatlock CSE 505 Fall 2013, Lecture 12 2

Elsewhere in the Universe (or the other side of campus)

What do logicians do?
I Define formal logics

I tools to precisely state propositions

I Define proof systems
I tools to figure out which propositions are true

Turns out, we did that too!

Zach Tatlock CSE 505 Fall 2013, Lecture 12 3

Punchline

We are accidental logicians!

The Curry-Howard Isomorphism

I Proofs : Propositions :: Programs : Types

I proofs are to propositions as programs are to types

Zach Tatlock CSE 505 Fall 2013, Lecture 12 4

Punchline... wat.

Zach Tatlock CSE 505 Fall 2013, Lecture 12 5

Woah. Back up a second. Logic?!

Let’s trim down our (explicitly typed) simply-typed λ-calculus to:

e ::= x | λx. e | e e
| (e, e) | e.1 | e.2
| A(e) | B(e) | match e with Ax. e | Bx. e

τ ::= b | τ → τ | τ ∗ τ | τ + τ

I Lambdas, Pairs, and Sums

I Any number of base types b1, b2, . . .

I No constants (can add one or more if you want)

I No fix

What good is this?!

Well, even sans constants, plenty of terms type-check with Γ = ·

Zach Tatlock CSE 505 Fall 2013, Lecture 12 6

λx:b. x

has type

b→ b

Zach Tatlock CSE 505 Fall 2013, Lecture 12 7

λx:b1. λf :b1 → b2. f x

has type

b1 → (b1 → b2)→ b2

Zach Tatlock CSE 505 Fall 2013, Lecture 12 8

λx:b1 → b2 → b3. λy:b2. λz:b1. x z y

has type

(b1 → b2 → b3)→ b2 → b1 → b3

Zach Tatlock CSE 505 Fall 2013, Lecture 12 9

λx:b1. (A(x),A(x))

has type

b1 → ((b1 + b7) ∗ (b1 + b4))

Zach Tatlock CSE 505 Fall 2013, Lecture 12 10

λf :b1 → b3. λg:b2 → b3. λz:b1 + b2.
(match z with Ax. f x | Bx. g x)

has type

(b1 → b3)→ (b2 → b3)→ (b1 + b2)→ b3

Zach Tatlock CSE 505 Fall 2013, Lecture 12 11

λx:b1 ∗ b2. λy:b3. ((y, x.1), x.2)

has type

(b1 ∗ b2)→ b3 → ((b3 ∗ b1) ∗ b2)

Zach Tatlock CSE 505 Fall 2013, Lecture 12 12

Empty and Nonempty Types

Just saw a few “nonempty” types

I τ nonempy if closed term e has type τ

I τ empty otherwise

Are there any empty types?

Sure! b1 b1 → b2 b1 → (b2 → b1)→ b2

What does this one mean?

b1 + (b1 → b2)

I wonder if there’s any way to distinguish empty vs. nonempty...

Ohwell, now for a totally irrelevant tangent!

Zach Tatlock CSE 505 Fall 2013, Lecture 12 13

Totally irrelevant tangent.

Zach Tatlock CSE 505 Fall 2013, Lecture 12 14

Propositional Logic

Suppose we have some set b of basic propositions b1, b2, . . .

I e.g. “ML is better than Haskell”

Then, using standard operators ⊃,∧,∨, we can define formulas:

p ::= b | p ⊃ p | p ∧ p | p ∨ p
I e.g. “ML is better than Haskell” ∧ “Haskell is not pure”

Some formulas are tautologies: by virtue of their structure, they
are always true regardless of the truth of their constituent
propositions.

I e.g. p1 ⊃ p1

Not too hard to build a proof system to establish tautologyhood.

Zach Tatlock CSE 505 Fall 2013, Lecture 12 15

Proof System

Γ ::= · | Γ, p

Γ ` p

Γ ` p1 Γ ` p2
Γ ` p1 ∧ p2

Γ ` p1 ∧ p2
Γ ` p1

Γ ` p1 ∧ p2
Γ ` p2

Γ ` p1
Γ ` p1 ∨ p2

Γ ` p2
Γ ` p1 ∨ p2

Γ ` p1 ∨ p2 Γ, p1 ` p3 Γ, p2 ` p3
Γ ` p3

p ∈ Γ

Γ ` p
Γ, p1 ` p2

Γ ` p1 ⊃ p2
Γ ` p1 ⊃ p2 Γ ` p1

Γ ` p2

Zach Tatlock CSE 505 Fall 2013, Lecture 12 16

Wait a second...

Zach Tatlock CSE 505 Fall 2013, Lecture 12 17

Wait a second... ZOMG!

That’s exactly our type system! Just erase terms, change each τ to a p,
and translate→ to ⊃, ∗ to ∧, + to ∨.

Γ ` e : τ

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2
Γ ` e : τ1 ∗ τ2
Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2
Γ ` e.2 : τ2

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Γ(x) = τ

Γ ` x : τ

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Zach Tatlock CSE 505 Fall 2013, Lecture 12 18

What does it all mean? The Curry-Howard Isomorphism.

I Given a well-typed closed term, take the typing derivation,
erase the terms, and have a propositional-logic proof

I Given a propositional-logic proof, there exists a closed term
with that type

I A term that type-checks is a proof — it tells you exactly how
to derive the logic formula corresponding to its type

I Constructive (hold that thought) propositional logic and
simply-typed lambda-calculus with pairs and sums are the
same thing.

I Computation and logic are deeply connected
I λ is no more or less made up than implication

I Revisit our examples under the logical interpretation...

Zach Tatlock CSE 505 Fall 2013, Lecture 12 19

λx:b. x

is a proof that

b→ b

Zach Tatlock CSE 505 Fall 2013, Lecture 12 20

λx:b1. λf :b1 → b2. f x

is a proof that

b1 → (b1 → b2)→ b2

Zach Tatlock CSE 505 Fall 2013, Lecture 12 21

λx:b1 → b2 → b3. λy:b2. λz:b1. x z y

is a proof that

(b1 → b2 → b3)→ b2 → b1 → b3

Zach Tatlock CSE 505 Fall 2013, Lecture 12 22

λx:b1. (A(x),A(x))

is a proof that

b1 → ((b1 + b7) ∗ (b1 + b4))

Zach Tatlock CSE 505 Fall 2013, Lecture 12 23

λf :b1 → b3. λg:b2 → b3. λz:b1 + b2.
(match z with Ax. f x | Bx. g x)

is a proof that

(b1 → b3)→ (b2 → b3)→ (b1 + b2)→ b3

Zach Tatlock CSE 505 Fall 2013, Lecture 12 24

λx:b1 ∗ b2. λy:b3. ((y, x.1), x.2)

is a proof that

(b1 ∗ b2)→ b3 → ((b3 ∗ b1) ∗ b2)

Zach Tatlock CSE 505 Fall 2013, Lecture 12 25

So what?

Because:

I This is just fascinating (glad I’m not a dog)

I Don’t think of logic and computing as distinct fields

I Thinking “the other way” can help you know what’s
possible/impossible

I Can form the basis for theorem provers

I Type systems should not be ad hoc piles of rules!

So, every typed λ-calculus is a proof system for some logic...

Is STLC with pairs and sums a complete proof system for
propositional logic? Almost...

Zach Tatlock CSE 505 Fall 2013, Lecture 12 26

Classical vs. Constructive

Classical propositional logic has the “law of the excluded middle”:

Γ ` p1 + (p1 → p2)

(Think “p+¬p” – also equivalent to double-negation ¬¬p→ p)

STLC does not support this law; for example, no closed expression
has type b1 + (b1 → b2)

Logics without this rule are called constructive. They’re useful
because proofs “know how the world is” and “are executable” and
“produce examples”

Can still “branch on possibilities” by making the excluded middle
an explicit assumption:

((p1 + (p1 → p2)) ∗ (p1 → p3) ∗ ((p1 → p2)→ p3))→ p3

Zach Tatlock CSE 505 Fall 2013, Lecture 12 27

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers a and b such that ab is rational.

Classical Proof:

Let x =
√

2. Either xx is rational or it is irrational.

If xx is rational, let a = b =
√

2, done.

If xx is irrational, let a = xx and b = x. Since(√
2

√
2
)√2

=
√

2
(
√

2·
√

2)
=
√

2
2

= 2, done.

Well, I guess we know there are some a and b satisfying the theorem...
but which ones? LAME.

Constructive Proof:

Let a =
√

2, b = log2 9.

Since
√

2
log2 9

= 9log2

√
2 = 9log2(2

0.5) = 90.5 = 3, done.

To prove that something exists, we actually had to produce it. SWEET.
Zach Tatlock CSE 505 Fall 2013, Lecture 12 28

Classical vs. Constructive, a Perspective

Constructive logic allows us to distinguish between things that
classical logic just crudely lumps together.

Consider “P is true.” vs. “It would be absurd if P were false.”
I P vs. ¬¬P

Those are different things, but classical logic is too clumsy to tell.

Our friends Gödel and Gentzen gave us this
nice result:

P is provable in classical logic iff ¬¬P is
provable in constructive logic.

Zach Tatlock CSE 505 Fall 2013, Lecture 12 29

Fix

A “non-terminating proof” is no proof at all.

Remember the typing rule for fix:

Γ ` e : τ → τ

Γ ` fix e : τ

That let’s us prove anything! Example: fix λx:b. x has type b

So the “logic” is inconsistent (and therefore worthless)

Related: In ML, a value of type ’a never terminates normally
(raises an exception, infinite loop, etc.)

let rec f x = f x

let z = f 0

Zach Tatlock CSE 505 Fall 2013, Lecture 12 30

Last word on Curry-Howard

It’s not just STLC and constructive propositional logic

Every logic has a correspondng typed λ calculus (and no consistent
logic has something as “powerful” as fix).

I Example: When we add universal types (“generics”) in a later
lecture, that corresponds to adding universal quantification

If you remember one thing: the typing rule for function application
is modus ponens

Zach Tatlock CSE 505 Fall 2013, Lecture 12 31

