Review

\[
\begin{align*}
e & ::= \lambda x. e \mid x \mid e \ e \mid c \\
v & ::= \lambda x. e \mid c \\
\tau & ::= \text{int} \mid \tau \rightarrow \tau \\
\Gamma & ::= \cdot \mid \Gamma, x : \tau
\end{align*}
\]

- \((\lambda x. e) \ v \rightarrow e[v/x]\)
- \(e_1 \rightarrow e'_1\)
- \(e_2 \rightarrow e'_2\)
- \(e_1 \ e_2 \rightarrow e'_1 \ e_2\)
- \(v \ e_2 \rightarrow v \ e'_2\)

\(e[e'/x]\): capture-avoiding substitution of \(e'\) for free \(x\) in \(e\)

\[
\begin{align*}
\Gamma \vdash c : \text{int} \\
\Gamma \vdash x : \Gamma(x) \\
\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \\
\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \\
\Gamma \vdash e_2 : \tau_2 \\
\Gamma \vdash e_1 \ e_2 : \tau_1
\end{align*}
\]

Preservation: If \(\cdot \vdash e : \tau\) and \(e \rightarrow e'\), then \(\cdot \vdash e' : \tau\).
Progress: If \(\cdot \vdash e : \tau\), then \(e\) is a value or \(\exists e'\) such that \(e \rightarrow e'\).
Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a principled methodology thanks to a proper education

- Extend the syntax
- Extend the operational semantics
 - Derived forms (syntactic sugar), or
 - Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure
Pairs (CBV, left-right)

\[e ::= \ldots \mid (e, e) \mid e.1 \mid e.2 \]
\[v ::= \ldots \mid (v, v) \]
\[\tau ::= \ldots \mid \tau \ast \tau \]

\[e_1 \rightarrow e'_1 \]
\[(e_1, e_2) \rightarrow (e'_1, e_2) \]

\[e \rightarrow e' \]
\[e.1 \rightarrow e'.1 \]

\[e.2 \rightarrow e'.2 \]

\[(v_1, v_2).1 \rightarrow v_1 \]
\[(v_1, v_2).2 \rightarrow v_2 \]

Small-step can be a pain

- Large-step needs only 3 rules
- Will learn more concise notation later (evaluation contexts)
Pairs continued

\[
\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \\
\frac{}{\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2}
\]

\[
\Gamma \vdash e : \tau_1 \ast \tau_2 \\
\frac{}{\Gamma \vdash e.1 : \tau_1} \quad \frac{}{\Gamma \vdash e.2 : \tau_2}
\]

Canonical Forms: If \(\cdot \vdash v : \tau_1 \ast \tau_2 \), then \(v \) has the form \((v_1, v_2)\)

Progress: New cases using Canonical Forms are \(v.1\) and \(v.2\)

Preservation: For primitive reductions, inversion gives the result directly
Records

Records are like \(n \)-ary tuples except with \textit{named fields}

- Field names are \textit{not} variables; they do \textit{not} \(\alpha \)-convert

\[
\begin{align*}
e & ::= \ldots \mid \{l_1 = e_1; \ldots; l_n = e_n\} \mid e.l \\
v & ::= \ldots \mid \{l_1 = v_1; \ldots; l_n = v_n\} \\
\tau & ::= \ldots \mid \{l_1 : \tau_1; \ldots; l_n : \tau_n\}
\end{align*}
\]

\[
\begin{align*}
e_i \rightarrow e_i' & \quad \frac{\{l_1=v_1, \ldots, l_{i-1}=v_{i-1}, l_i=e_i, \ldots, l_n=e_n\}}{\{l_1=v_1, \ldots, l_{i-1}=v_{i-1}, l_i=e_i', \ldots, l_n=e_n\}} \\
e \rightarrow e' & \quad \frac{e.l \rightarrow e'.l}{\quad}
\end{align*}
\]

\[
\begin{align*}
1 \leq i \leq n & \quad \frac{\{l_1 = v_1, \ldots, l_n = v_n\}.l_i \rightarrow v_i}{\quad}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e_1 : \tau_1 \quad \ldots \quad \Gamma \vdash e_n : \tau_n & \quad \text{labels distinct} \\
\Gamma \vdash \{l_1 = e_1, \ldots, l_n = e_n\} : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} & \quad \frac{\Gamma \vdash e : \{l_1 : \tau_1, \ldots, l_n : \tau_n\}}{\Gamma \vdash e.l_i : \tau_i \quad 1 \leq i \leq n}
\end{align*}
\]
Records continued

Should we be allowed to reorder fields?

- \[l_1 = 42; l_2 = \text{true} \] : \(\{ l_2 : \text{bool}; l_1 : \text{int} \} \) ??

- Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

- Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping
Sums

What about ML-style datatypes:

```plaintext
type t = A | B of int | C of int * t
```

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., `type 'a mylist = ...`)

4. Named types

For now, just model (1) with (anonymous) sum types

- (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss informally
Sums syntax and overview

\[e ::= \ldots | A(e) | B(e) | \text{match } e \text{ with } Ax. \ e | Bx. \ e \]

\[v ::= \ldots | A(v) | B(v) \]

\[\tau ::= \ldots | \tau_1 + \tau_2 \]

- Only two constructors: \(A \) and \(B \)
- All values of any sum type built from these constructors
- So \(A(e) \) can have any sum type allowed by \(e \)'s type
- No need to declare sum types in advance
- Like functions, will “guess the type” in our rules
Sums operational semantics

\[
\text{match } A(v) \text{ with } Ax. \; e_1 \mid By. \; e_2 \to e_1[v/x]
\]

\[
\text{match } B(v) \text{ with } Ax. \; e_1 \mid By. \; e_2 \to e_2[v/y]
\]

\[
e \to e' \quad \Rightarrow \quad A(e) \to A(e') \quad \quad \quad \quad B(e) \to B(e')
\]

\[
e \to e' \quad \Rightarrow \quad \text{match } e \text{ with } Ax. \; e_1 \mid By. \; e_2 \to \text{match } e' \text{ with } Ax. \; e_1 \mid By. \; e_2
\]

\textbf{match} has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)
What is going on

Feel free to think about tagged values in your head:

- A tagged value is a pair of:
 - A tag A or B (or 0 or 1 if you prefer)
 - The (underlying) value

- A match:
 - Checks the tag
 - Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2
Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

\[
\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash A(e) : \tau_1 + \tau_2} \quad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash B(e) : \tau_1 + \tau_2}
\]

\[
\frac{\Gamma \vdash e : \tau_1 + \tau_2 \quad \Gamma, x:\tau_1 \vdash e_1 : \tau \quad \Gamma, y:\tau_2 \vdash e_2 : \tau}{\Gamma \vdash \text{match } e \text{ with } A x. \ e_1 \mid B y. \ e_2 : \tau}
\]

Key ideas:

- For constructor-uses, “other side can be anything”
- For \textbf{match}, both sides need same type
 - Don’t know which branch will be taken, just like an \textbf{if}.
 - In fact, can drop explicit booleans and encode with sums:
 - E.g., \textbf{bool} = \textbf{int} + \textbf{int}, \textbf{true} = \textbf{A}(0), \textbf{false} = \textbf{B}(0)
Sums Type Safety

Canonical Forms: If \(\cdot \vdash v : \tau_1 + \tau_2 \), then there exists a \(v_1 \) such that either \(v \) is \(A(v_1) \) and \(\cdot \vdash v_1 : \tau_1 \) or \(v \) is \(B(v_1) \) and \(\cdot \vdash v_1 : \tau_2 \)

- Progress for \textbf{match} \(v \) with \(Ax. \ e_1 \mid By. \ e_2 \) follows, as usual, from Canonical Forms

- Preservation for \textbf{match} \(v \) with \(Ax. \ e_1 \mid By. \ e_2 \) follows from the type of the underlying value and the Substitution Lemma

- The Substitution Lemma has new “hard” cases because we have new binding occurrences

- But that’s all there is to it (plus lots of induction)
What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: “this or that not both”
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another
type t = A of t1 | B of t2 | C of t3
match e with A x -> ...

One way in C:

```c
struct t {
    enum {A, B, C} tag;
    union {t1 a; t2 b; t3 c;} data;
};
... switch(e->tag){ case A: t1 x=e->data.a; ...
```

- No static checking that tag is obeyed
- As fat as the fattest variant (avoidable with casts)
 - Mutation costs us again!
Sums in Java

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 m(){...}}
class B extends t { t2 x; t4 m(){...}}
class C extends t { t3 x; t4 m(){...}}
... e.m() ...

▷ A new method in t and subclasses for each match expression
▷ Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)
Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- Example: replace `int + (int → int)` with `int * (int * (int → int))`

Pairs and sums are “logical duals” (more on that later)

- To make a \(\tau_1 \times \tau_2 \) you need a \(\tau_1 \) and a \(\tau_2 \)
- To make a \(\tau_1 + \tau_2 \) you need a \(\tau_1 \) or a \(\tau_2 \)
- Given a \(\tau_1 \times \tau_2 \), you can get a \(\tau_1 \) or a \(\tau_2 \) (or both; your “choice”)
- Given a \(\tau_1 + \tau_2 \), you must be prepared for either a \(\tau_1 \) or \(\tau_2 \) (the value’s “choice”)