CSE 505: Programming Languages

Lecture 13 — Safely Extending STLC: Sums,
Products, Bools

Zach Tatlock
Fall 2013

Adding Stuff

Time to use STLC as a foundation for understanding other
common language constructs

We will add things via a principled methodology thanks to a proper
education

» Extend the syntax
» Extend the operational semantics

» Derived forms (syntactic sugar), or
» Direct semantics

» Extend the type system

» Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure
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Review

e = Ar.e|xz|ee|c T u= int|T—o>T
v 2= Az.e|c r o= .| T,x: T
e1 — €] ez — €,

(Azx. e) v — e[v/x] e1 ex — €] ez vey — e,

ele’/x]: capture-avoiding substitution of e’ for free x in e

x:mmbFe:m

I'Fc:int I'x:T'(x) 'FAx.e:m — 7

'kei:m7— 7 I'ex:m

I'Feilezs:m

Preservation: If - e : 7 and e — €/, then - - ¢€’ : T.
Progress: If - = e : 7, then e is a value or 3 €’ such that e — €’.
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Pairs (CBV, left-right)

e == ...|(e;e)|el]e2
v u= ...|(v,v)
T u= .| TxT
61—)6,1 62—>€,2

(61782) — (611782) (’U1,€2) — (0196,2)

e —> e e —¢e

el — €.l e2 —e'.2

(’Ul, ’02).1 — U1 (’Ul, ’1)2).2 —r V2

Small-step can be a pain

> Large-step needs only 3 rules

» Will learn more concise notation later (evaluation contexts)
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Pairs continued Records

Records are like m-ary tuples except with named fields

I'e:m I'es:m » Field names are not variables; they do not a-convert
T F (e1,ez) : 71 * T2 e = ...|{i=e1;...5l, =en}|el
v = .| {1 =v15..050, = vn}
The:T T The:T %7 T u= oo {li iyl i T}
'kel:mn 'ke2: 7 e; — €] e—e
{li=v1,... li1=v;_1,li=e€4,y ..., ln=e€y} el = €'l
Canonical Forms: If - = v : 71 * 79, then v has the form (v1,v2) = {li=v1,..., li_1=v;_1,l;=€}, ..., l,=e,}
Progress: New cases using Canonical Forms are v.1 and v.2 1<isn

{li =v1y.. 05l = v}l — v;
Preservation: For primitive reductions, inversion gives the result

directly I'Fe:m cen I'te,:m™ labels distinct
FH{li=e1y...5lp=ep}: {ly: 71,005l T}
F'ke:{ly:71y...,ln:Th} 1<i<n
I+ e.li LT
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Records continued Sums

What about ML-style datatypes:
Should we be allowed to reorder fields?

» - {ly = 42513 = true} : {l2 : bool;l; : int} 77

» Really a question about, “when are two types equal?”

type t = A | B of int | C of int * t

1. Tagged variants (i.e., discriminated unions)

Nothing wrong with this from a type-safety perspective, yet many 2. Recursive types
languages disallow it
» Reasons: Implementation efficiency, type inference 3. Type constructors (e.g., type ’a mylist = ...)

4. Named t
Return to this topic when we study subtyping amed types

For now, just model (1) with (anonymous) sum types

> (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss
informally
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Sums syntax and overview Sums operational semantics

e == ...|A(e) | B(e) | match e with Az. e | Bx. e

v u= ...|A(v) | B(v) match A(v) with Az. e; | By. ea — e1[v/x]
T o= ... T4+ T
match B(v) with Az. e; | By. ea — e2[v/y]
» Only two constructors: A and B , ,
e —e e —e
» All values of any sum type built from these constructors A(e) — A(e’) B(e) — B(e')
» So A(e) can have any sum type allowed by e's type e —¢€

match e with Az. e; | By. ez — match e’ with Azx. e; | By. ez

v

No need to declare sum types in advance

match has binding occurrences, just like pattern-matching

v

Like functions, will “guess the type” in our rules

(Definition of substitution must avoid capture, just like functions)
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What is going on Sums Typing Rules

Inference version (not trivial to infer; can require annotations)
Feel free to think about tagged values in your head:

I'Fe:m I'Fe:m
» A tagged value is a pair of: T'HA(e): 1 + 72 T+ B(e):m + 7
» A tag A or B (or 0 or 1 if you prefer)
> The (underlying) value I'Fe:m + 12 Feember:r I'yy:to Fex: 7
> A match: I' - match e with Az. e; | By. ey : 7

» Checks the tag

Key ideas:
» Binds the variable to the (underlying) value

» For constructor-uses, “other side can be anything”

» For match, both sides need same type

» Don't know which branch will be taken, just like an if.
> In fact, can drop explicit booleans and encode with sums:
E.g., bool = int + int, true = A(0), false = B(0)

This much is just like OCaml and related to homework 2
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Sums Type Safety What are sums for?

Canonical Forms: If - = v : 71 + T2, then there exists a v1 such
that either v is A(v1) and -+ F vy : 71 or v is B(v1) and
kv T

» Pairs, structs, records, aggregates are fundamental
data-builders

» Progress for match v with Az. ey | By. ez follows, as usual, > Sums are just as fundamental: "this or that not both

from Canonical Forms
» You have seen how OCaml does sums (datatypes)

» Preservation for match v with Azx. e; | By. ez follows from

the type of the underlying value and the Substitution Lemma > Worth showing how C and Java do the same thing

> A primitive in one language is an idiom in another

» The Substitution Lemma has new “hard” cases because we
have new binding occurrences

» But that's all there is to it (plus lots of induction)
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Sums in C Sums in Java
type t = A of t1 | B of t2 | C of t3 type t = A of t1 | B of t2 | C of t3
match e with A x -> ... match e with A x ->
One way in C: One way in Java (t4 is the match-expression’s type):
struct t { abstract class t {abstract t4 m();}
enum {A, B, C} tag; class A extends t { t1 x; t4 mO{...}}
union {tl1l a; t2 b; t3 c;} data; class B extends t { t2 x; t4 mO{...}}
}; class C extends t { t3 x; t4 mO{...}}
switch(e->tag){ case A: tl x=e->data.a; ... ... e.m()

» A new method in t and subclasses for each match expression

> No static checking that tag is obeyed » Supports extensibility via new variants (subclasses) instead of
> As fat as the fattest variant (avoidable with casts) extensibility via new operations (match expressions)
» Mutation costs us again!
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Pairs vs. Sums

You

>

need both in your language

With only pairs, you clumsily use dummy values, waste space,
and rely on unchecked tagging conventions

Example: replace int 4 (int — int) with

int % (int % (int — int))

Pairs and sums are “logical duals” (more on that later)

>

>

>

v
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To make a 71 * T2 you need a 7y and a T2
To make a 71 + 72 you need a 7 or a T2

Given a Ty * T2, you can get a 71 or a T2 (or both; your
“choice”)

Given a 71 4+ T2, you must be prepared for either a 71 or T2
(the value's “choice”)
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