CSE 505: Programming Languages

Lecture 13 — Safely Extending STLC: Sums,
Products, Bools

Zach Tatlock
Fall 2013

Adding Stuff

Time to use STLC as a foundation for understanding other
common language constructs

We will add things via a principled methodology thanks to a proper
education

» Extend the syntax
» Extend the operational semantics

» Derived forms (syntactic sugar), or
» Direct semantics

» Extend the type system

» Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure

CSE 505 Fall 2013, Lecture 13

Zach Tatlock

3

Review

e = Ar.e|xz|ee|c T u= int|T—o>T
v 2= Az.e|c r o= .| T,x: T
e1 — €] ez — €,

(Azx. e) v — e[v/x] e1 ex — €] ez vey — e,

ele’/x]: capture-avoiding substitution of e’ for free x in e

x:mmbFe:m

I'Fc:int I'x:T'(x) 'FAx.e:m — 7

'kei:m7— 7 I'ex:m

I'Feilezs:m

Preservation: If - e : 7 and e — €/, then - - ¢€’ : T.
Progress: If - = e : 7, then e is a value or 3 €’ such that e — €’.

Zach Tatlock CSE 505 Fall 2013, Lecture 13

Pairs (CBV, left-right)

e == ...|(e;e)|el]e2
v u= ...|(v,v)
T u= .| TxT
61—)6,1 62—>€,2

(61782) — (611782) (’U1,€2) — (0196,2)

e —> e e —¢e

el — €.l e2 —e'.2

(’Ul, ’02).1 — U1 (’Ul, ’1)2).2 —r V2

Small-step can be a pain

> Large-step needs only 3 rules

» Will learn more concise notation later (evaluation contexts)

Zach Tatlock CSE 505 Fall 2013, Lecture 13

Pairs continued Records

Records are like m-ary tuples except with named fields

I'e:m I'es:m » Field names are not variables; they do not a-convert
T F (e1,ez) : 71 * T2 e = ...|{i=e1;...5l, =en}|el
v = .| {1 =v15..050, = vn}
The:T T The:T %7 T u= oo {li iyl i T}
'kel:mn 'ke2: 7 e; — €] e—e
{li=v1,... li1=v;_1,li=e€4,y ..., ln=e€y} el = €'l
Canonical Forms: If - = v : 71 * 79, then v has the form (v1,v2) = {li=v1,..., li_1=v;_1,l;=€}, ..., l,=e,}
Progress: New cases using Canonical Forms are v.1 and v.2 1<isn

{li =v1y.. 05l = v}l — v;
Preservation: For primitive reductions, inversion gives the result

directly I'Fe:m cen I'te,:m™ labels distinct
FH{li=e1y...5lp=ep}: {ly: 71,005l T}
F'ke:{ly:71y...,ln:Th} 1<i<n
I+ e.li LT
Zach Tatlock CSE 505 Fall 2013, Lecture 13) Zach Tatlock CSE 505 Fall 2013, Lecture 13 6
Records continued Sums

What about ML-style datatypes:
Should we be allowed to reorder fields?

» - {ly = 42513 = true} : {l2 : bool;l; : int} 77

» Really a question about, “when are two types equal?”

type t = A | B of int | C of int * t

1. Tagged variants (i.e., discriminated unions)

Nothing wrong with this from a type-safety perspective, yet many 2. Recursive types
languages disallow it
» Reasons: Implementation efficiency, type inference 3. Type constructors (e.g., type ’a mylist = ...)

4. Named t
Return to this topic when we study subtyping amed types

For now, just model (1) with (anonymous) sum types

> (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss
informally

Zach Tatlock CSE 505 Fall 2013, Lecture 13 7 Zach Tatlock CSE 505 Fall 2013, Lecture 13

Sums syntax and overview Sums operational semantics

e == ...|A(e) | B(e) | match e with Az. e | Bx. e

v u= ...|A(v) | B(v) match A(v) with Az. e; | By. ea — e1[v/x]
T o= ... T4+ T
match B(v) with Az. e; | By. ea — e2[v/y]
» Only two constructors: A and B , ,
e —e e —e
» All values of any sum type built from these constructors A(e) — A(e’) B(e) — B(e')
» So A(e) can have any sum type allowed by e's type e —¢€

match e with Az. e; | By. ez — match e’ with Azx. e; | By. ez

v

No need to declare sum types in advance

match has binding occurrences, just like pattern-matching

v

Like functions, will “guess the type” in our rules

(Definition of substitution must avoid capture, just like functions)
Zach Tatlock CSE 505 Fall 2013, Lecture 13 9 Zach Tatlock CSE 505 Fall 2013, Lecture 13 10
What is going on Sums Typing Rules

Inference version (not trivial to infer; can require annotations)
Feel free to think about tagged values in your head:

I'Fe:m I'Fe:m
» A tagged value is a pair of: T'HA(e): 1 + 72 T+ B(e):m + 7
» A tag A or B (or 0 or 1 if you prefer)
> The (underlying) value I'Fe:m + 12 Feember:r I'yy:to Fex: 7
> A match: I' - match e with Az. e; | By. ey : 7

» Checks the tag

Key ideas:
» Binds the variable to the (underlying) value

» For constructor-uses, “other side can be anything”

» For match, both sides need same type

» Don't know which branch will be taken, just like an if.
> In fact, can drop explicit booleans and encode with sums:
E.g., bool = int + int, true = A(0), false = B(0)

This much is just like OCaml and related to homework 2

Zach Tatlock CSE 505 Fall 2013, Lecture 13 11 Zach Tatlock CSE 505 Fall 2013, Lecture 13

Sums Type Safety What are sums for?

Canonical Forms: If - = v : 71 + T2, then there exists a v1 such
that either v is A(v1) and -+ F vy : 71 or v is B(v1) and
kv T

» Pairs, structs, records, aggregates are fundamental
data-builders

» Progress for match v with Az. ey | By. ez follows, as usual, > Sums are just as fundamental: "this or that not both

from Canonical Forms
» You have seen how OCaml does sums (datatypes)

» Preservation for match v with Azx. e; | By. ez follows from

the type of the underlying value and the Substitution Lemma > Worth showing how C and Java do the same thing

> A primitive in one language is an idiom in another

» The Substitution Lemma has new “hard” cases because we
have new binding occurrences

» But that's all there is to it (plus lots of induction)

Zach Tatlock CSE 505 Fall 2013, Lecture 13 13 Zach Tatlock CSE 505 Fall 2013, Lecture 13 14
Sums in C Sums in Java
type t = A of t1 | B of t2 | C of t3 type t = A of t1 | B of t2 | C of t3
match e with A x -> ... match e with A x ->
One way in C: One way in Java (t4 is the match-expression’s type):
struct t { abstract class t {abstract t4 m();}
enum {A, B, C} tag; class A extends t { t1 x; t4 mO{...}}
union {tl1l a; t2 b; t3 c;} data; class B extends t { t2 x; t4 mO{...}}
}; class C extends t { t3 x; t4 mO{...}}
switch(e->tag){ case A: tl x=e->data.a; e.m()

» A new method in t and subclasses for each match expression

> No static checking that tag is obeyed » Supports extensibility via new variants (subclasses) instead of
> As fat as the fattest variant (avoidable with casts) extensibility via new operations (match expressions)
» Mutation costs us again!

Zach Tatlock CSE 505 Fall 2013, Lecture 13 15 Zach Tatlock CSE 505 Fall 2013, Lecture 13

Pairs vs. Sums

You

>

need both in your language

With only pairs, you clumsily use dummy values, waste space,
and rely on unchecked tagging conventions

Example: replace int 4 (int — int) with

int % (int % (int — int))

Pairs and sums are “logical duals” (more on that later)

>

>

>

v

Zach Tatlock

To make a 71 * T2 you need a 7y and a T2
To make a 71 + 72 you need a 7 or a T2

Given a Ty * T2, you can get a 71 or a T2 (or both; your
“choice”)

Given a 71 4+ T2, you must be prepared for either a 71 or T2
(the value's “choice”)

CSE 505 Fall 2013, Lecture 13

