CSE 505
Programming Languages

Intro
Today: Introduction

Administrivia

Motivation and Goals

Overview

Caml Crash Course
Hello! My name is...

Zach Tatlock
ztatlock@cs
CSE 546
door is open!

New faculty \Rightarrow first ever course!
Resources

Web:

http://courses.cs.washington.edu/
courses/cse505/13au/

Mailing List:

cse505a_au13@u.washington.edu

Piazza:

(your course email will be subscribed)
Structure

4-5 Individual Homeworks:
- “pen & paper” (TeX) proofs
- implementations in OCaml
- challenge problems optional

Midterm & Final

Useful, Optional Reference
Pierce’s *Types and Programming Languages*
Academic Integrity

Erodes the very foundation of academia.
Absolutely not worth the risk.

Roughly:
Discuss problem and \textit{sketch} ideas together.
Write your own solutions, note discussion partners.

When in doubt, ask!
Today: Introduction

Administrivia

Motivation and Goals

Overview

Caml Crash Course
Today: Introduction

Administrivia

Motivation and Goals

Overview

Caml Crash Course
PROGRAMMING
You're Doing It Completely Wrong.
SOFTWARE IS GREAT!!!
The magic of myth and legend has been realized in our time. One simply types the correct incantation on a keyboard, and a display screen comes to life, showing things that never were nor could be.

Fred Brooks
A Software Crisis?
'Please, sir, may I have some more?'

An op-ed piece

David Notkin
University of Washington

http://cs.brown.edu/events/talks/notkin.html
SOFTWARE IS GREAT!!!

... but (often) still poorly understood!
wat

Wat
@garybernhardt

https://www.destroyallsoftware.com/talks/wat
Room For Improvement

Development
quickly produce high quality code in teams

Maintenance
comprehend, extend, fix bugs, tune

Reliability
avionics, medicine, finance, nuclear power

Require reasoning!
What do these do?

```
a=0?(3>2?23:(2>5?(7<6?34:48):64)):1;
printf("%d",a);
```

```
printf("%d", printf("%d",
    printf("%d", printf("%s", "husky"))));
```

Realistic?
Safe to optimize / refactor?

class A { int f() { return 0; } }
class B {
 int g(A x) {
 try { return x.f(); }
 finally { foo(); }
 }
}

class A { int f() { return 0; } }
class B {
 int g(A x) {
 return 0;
 }
}
Safe to optimize / refactor?
... nope.

A could be extended
x could be null
s could have “side effects”

How can we handle general case?
How can we be sure it’s right?
How do we automate?
Goal

Develop tools to **rigorously** study what programs mean.

equivalence, termination, determinism, ...
... [rigorous proofs about programs] are an absolute scientific ideal, like purity of materials in chemistry or accuracy of measurement in mechanics. The value of purity and accuracy (just like correctness) are often not appreciated until after the scientist has built the tools that make them achievable.

Sir C.A.R. Hoare

our goal is noble!
Benefits

Writing a PL-ish thing is inevitable

extensible systems, rich data structures, optimizer

Build skill with “Theory B” formalisms

all research needs precision, expressiveness, clarity

Become better programmers

travel to understand where you’re from
Today: Introduction

Administrivia

Motivation and Goals

Overview

Caml Crash Course
Today: Introduction

Administrivia

Motivation and Goals

Overview

Caml Crash Course
Which PL to Study?
Well... which is the best? Depends.
Aren’t they all the same? Yes and no.
Approach

Define small, tractable languages
 Turing complete, but not for “real” programming

Extend with increasingly rich features
 extend reasoning techniques in parallel

Sketch application to “real” PLs
 implement programs to connect theory with code

10 weeks is short!
Subgoals

Develop tools for studying program behavior
 inductive defns, structural induction, inference rules

Investigate core PL concepts
 types, functions, scope, mutation, iteration
Today: Introduction

Administrivia

Motivation and Goals

Overview

Caml Crash Course
Today: Introduction

Administrivia

Motivation and Goals

Overview

Caml Crash Course