CSE505 Concepts of Programming Languages, Write a Technical Perspective
Due: Two Deadlines As Described Below

Introduction: Inrecent years, the magazine Communications of the ACM (http://cacm.acm.org/magazines/)
has republished two computer-science research articles in each issue. It can be difficult for a typical com-
puter scientist to appreciate cutting-edge research because it may use unusual terminology /notation or rely

on other results that are not widely known. Therefore, each paper is preceded by a “Technical Perspective,”
which is written by an expert other than the authors. This short summary explains the importance of the
research and the particular contributions of the paper.

We are going to simulate this experience, with you in the role of the Technical Perspective author. This
assignment will involve three stages, each of which is more challenging than it may appear:

e Choose an appropriate research paper
e Understand the paper and identify the paper’s contributions over previous research

e Write a 1-3 page technical perspective

Stage 1: Choosing a Paper
No Formal Deadline

This assignment includes a list of papers from which you can choose. Most students will probably select
from this list, but doing so is not required. This list has the following significant biases:

1. Concepts and technical machinery from class are necessary to understand them.

2. Concepts and technical machinery from class are not sufficient to understand them. That is, you will
likely need to learn additional concepts on your own via additional.

3. Recent papers (the last few years) on topics of increasing importance (concurrency, scripting languages)
are over-represented.

4. Papers Dan happens to already be familiar with are over-represented (to ensure biases 1-3 efficiently).

Choose a paper by reading the abstracts and skimming or reading papers that sound interesting. Do not
panic if most of a paper is impenetrable on first reading — see Stage 2.

You may choose a paper not on the list, with instructor permission before the stage-2 due date. You can either
find a paper on your own, by skimming the proceedings of programming-languages research conferences, or
you can work with the instructor by telling him what sort of topic you are looking for. Note, however, that
biases 1 and 2 above are essential — you need a paper that at least indirectly relies on formal semantics, type
systems, or some other topic in the course. In short, pick a paper that needs knowledge from the course.

What if your friend wants the same paper: This is an individual assignment. If multiple class members
choose the same paper, that’s fine, but then you cannot work together or discuss the paper. On the other
hand, if your friend chooses a different paper, then you are allowed to discuss your papers together and
even proofread and provide suggestions for your technical perspectives. Therefore, there is some incentive
to coordinate with a friend or two to avoid picking the same paper.


http://cacm.acm.org/magazines/

Stage 2: Understanding Your Paper and Its Contributions
Due Sunday March 4, 11:00PM (earlier encouraged)

You have two goals in this stage:

e Thoroughly understand the paper

e Understand what this paper contributed to human knowledge

While the course has given you a solid foundation in programming-language semantics, a gap remains between
the classic concepts you have learned and the state-of-the-art. In short, you are unlikely to be able to read
your paper front-to-back. To find appropriate background reading, consider several strategies:

e Your paper cites previous papers. Identify which of those are most likely to provide the background
you need. Continue following references transitively until you find what you need.

e Search the web for tutorials and explanations.

e Ask Dan and Adrian questions about specific topics. A good question would be, “What is an open
class?” or “Do you know any tutorials on monads?” or “I understand Section 3.1 is about X but then
the first sentence of Section 3.2 is completely opaque — can you help?”

Turn-in / Grading: Email Adrian and Dan whatever you want provided that:

e It includes the title of the paper you chose.
e It is approximately one page, and definitely not more than two.

e [t makes a convincing case that you have read the paper and understand the vast majority of it.

An outline of the paper and list of contributions is a natural approach. It is not necessary to use complete
sentences. You might also list what other papers and references you found most useful.

This won’t really be graded, but you will receive a 10% penalty for not getting it done by the deadline. We
are doing this to avoid any suggestion that it is possible to do a great job on your technical perspective
without sufficient time after you understand the paper.

Stage 3: Write Your Technical Perspective
Due Friday, March 9, 11:00PM

The technical perspective must be more than 1 and at most 3 pages, single-spaced, single-column.
Writing concisely should be more difficult than writing a longer paper. Treasure your reader’s time, with
each sentence being interesting and essential. Convey all the main ideas and contributions of the paper.

The pretend audience is a senior studying computer science who has not taken CSE505. That is, you can
assume your audience is a decent programmer with a good education, but you cannot use any jargon or
technology that would be known only to programming-languages experts. In contrast, the paper you are
writing about does make such assumptions, since it was written for a more expert audience. Hence your
technical perspective is providing real value by making the ideas in the work more accessible.

The actual audience is the course staff. They want to see that the course has given you the ability (1) to
learn more about programming-languages research and (2) to communicate what you learn to others.

Turn-in / Grading: Use the course dropbox to turn in your technical perspective. PDF is preferred, but
other formats are probably fine too (check with us).



Suggested Papers (alphabetical by first author)

1. A language for automatically enforcing privacy policies
Jean Yang, Kuat Yessenov, Armando Solar-Lezama
ACM Symposium on the Principles of Programming Languages, 2012
http://dx.doi.org/10.1145/2103656.2103669

2. A compiler and run-time system for network programming languages
Christopher Monsanto, Nate Foster, Rob Harrison, David Walker
ACM Symposium on the Principles of Programming Languages, 2012
http://dx.doi.org/10.1145/2103656.2103685

3. Virtual values for language extension
Thomas H. Austin, Tim Disney, Cormac Flanagan
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, 2011
http://dx.doi.org/10.1145/2048066.2048136

4. The Essence of JavaScript
Arjun Guha, Claudiu Saftoiu, Shriram Krishnamurthi
European Conference on Object-Oriented Programming, 2010
http://www.cs.brown.edu/~sk/Publications/Papers/Published/gsk-essence-javascript/

5. A Type and Effect System for Deterministic Parallel Java
Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh
Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, Mohsen Vakilian
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, 2009
http://dx.doi.org/10.1145/1640089. 1640097

6. A Type and Effect System for Atomicity
Cormac Flanagan, Shaz Qadeer
ACM Conference on Programming Language Design and Implementation, 2003
http://dx.doi.org/10.1145/780822.781169

7. Phantom Types and Subtyping
Matthew Fluet, Riccardo Pucella
Journal of Functional Programming, 2006
http://dx.doi.org/10.1017/S0956796806006046

8. Transactional Events
Kevin Donnelly, Matthew Fluet
ACM International Conference on Functional Programming, 2006
http://dx.doi.org/10.1145/1160074.1159821

9. Automatically Restructuring Programs for the Web
Jacob Matthews, Robert Bruce Findler, Paul T. Graunke, Shriram Krishnamurthi, Matthias Felleisen
Automated Software Engineering Journal, 2004
http://www.cs.brown.edu/~sk/Publications/Papers/Published/mfgkf-web-restructuring-cps-journal/

10. High-Level Small-Step Operational Semantics for Transactions
Katherine F. Moore, Dan Grossman
ACM Symposium on the Principles of Programming Languages, 2008
http://dx.doi.org/10.1145/1328438.1328448


http://dx.doi.org/10.1145/2103656.2103669
http://dx.doi.org/10.1145/2103656.2103685
http://dx.doi.org/10.1145/2048066.2048136
http://www.cs.brown.edu/~sk/Publications/Papers/Published/gsk-essence-javascript/
http://dx.doi.org/10.1145/1640089.1640097
http://dx.doi.org/10.1145/780822.781169
http://dx.doi.org/10.1017/S0956796806006046
http://dx.doi.org/10.1145/1160074.1159821
http://www.cs.brown.edu/~sk/Publications/Papers/Published/mfgkf-web-restructuring-cps-journal/
http://dx.doi.org/10.1145/1328438.1328448

11.

12.

13.

14.

15.

16.

17.

18.

MultiJava: Modular Open Classes and Symmetric Multiple Dispatch for Java

Curtis Clifton, Gary T. Leavens, Craig Chambers, Todd Millstein

ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, 2000
http://dx.doi.org/10.1145/354222.353181

Fault-Tolerant Typed Assembly Language

Frances Perry, Lester Mackey, George A. Reis, Jay Ligatti, David I. August, David Walker
ACM Conference on Programming Language Design and Implementation, 2007
http://dx.doi.org/10.1145/1250734.1250741

The F# Asynchronous Programming Model

Tomas Petricek, Dmitry Lomov, Don Syme

International Symposium on Practical Aspects of Declarative Languages, 2011
http://blogs.msdn.com/cfs-file.ashx/__key/CommunityServer-Components-PostAttachments/
00-10-07-89-59/async_2D00_padl . pdf

Formal Verification of Object Layout for C++ Multiple Inheritance
Tahina Ramananandro, Gabriel Dos Reis, Xavier Leroy

ACM Symposium on the Principles of Programming Languages, 2011
http://dx.doi.org/10.1145/1925844.1926395

Extensible Pattern Matching via a Lightweight Language Extension
Don Syme, Gregory Neverov, James Margetson

ACM International Conference on Functional Programming, 2007
http://dx.doi.org/10.1145/1291151.1291159

The Design and Implementation of Typed Scheme

Sam Tobin-Hochstadt, Matthias Felleisen

ACM Symposium on the Principles of Programming Languages, 2008
http://dx.doi.org/10.1145/1328438.1328486

Practical Affine Types

Jesse A. Tov, Riccardo Pucella

ACM Symposium on the Principles of Programming Languages, 2011
http://dx.doi.org/10.1145/1926385.1926436

Integrating Typed And Untyped Code in a Scripting Language

Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Ostlund, Jan Vitek
ACM Symposium on the Principles of Programming Languages, 2010
http://dx.doi.org/10.1145/1706299.1706343


http://dx.doi.org/10.1145/354222.353181
http://dx.doi.org/10.1145/1250734.1250741
http://blogs.msdn.com/cfs-file.ashx/__key/CommunityServer-Components-PostAttachments/00-10-07-89-59/async_2D00_padl.pdf
http://blogs.msdn.com/cfs-file.ashx/__key/CommunityServer-Components-PostAttachments/00-10-07-89-59/async_2D00_padl.pdf
http://dx.doi.org/10.1145/1925844.1926395
http://dx.doi.org/10.1145/1291151.1291159
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/1926385.1926436
http://dx.doi.org/10.1145/1706299.1706343

