CSE505, Winter 2012, Midterm Examination
February 7, 2012

Rules:

• The exam is closed-book, closed-notes, except for one side of one 8.5x11in piece of paper.
• Please stop promptly at 10:20.
• You can rip apart the pages, but please write your name on each page.
• There are 100 points total, distributed unevenly among 5 questions (which have multiple parts).

Advice:

• Read questions carefully. Understand a question before you start writing.
• Write down thoughts and intermediate steps so you can get partial credit.
• The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you get to all the problems.
• If you have questions, ask.
• Relax. You are here to learn.
For your reference:

\[s ::= \text{skip} \mid x := e \mid s \mid \text{if } e \ s \mid \text{while } e \ s \]
\[e ::= c \mid x \mid e + e \mid e * e \]
\[(c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \]
\[(x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\}) \]

\[H; e \Downarrow c \]

\[\begin{array}{c|c|c|c}
\text{CONST} & \text{VAR} & \text{ADD} & \text{MULT} \\
\hline
H; c \Downarrow c & H; x \Downarrow H(x) & H; e_1 \Downarrow c_1 & H; e_1 + e_2 \Downarrow c_1 + c_2 \\
\hline
H_1; s_1 \rightarrow H_2; s_2 \\
\end{array} \]

\[\begin{array}{c}
\text{ASSIGN} \\
H; e \Downarrow c \\
H; x := e \rightarrow H, x \rightarrow c; \text{skip} \end{array} \]

\[\begin{array}{c}
\text{SEQ1} \\
H; \text{skip}; s \rightarrow H; s \\
\end{array} \]

\[\begin{array}{c}
\text{SEQ2} \\
H; s_1 \rightarrow H'; s_1' \\
H; s_1; s_2 \rightarrow H'; s_1'; s_2' \\
\end{array} \]

\[\begin{array}{c}
\text{IF1} \\
H; e \Downarrow c \\
H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_1 \\
\end{array} \]

\[\begin{array}{c}
\text{IF2} \\
H; e \Downarrow c \\
H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_2 \\
\end{array} \]

\[\begin{array}{c}
\text{WHILE} \\
H; \text{while } e \ s \rightarrow H; \text{if } e \ (s; \text{while } e \ s) \text{ skip} \\
\end{array} \]

\[e := \lambda x. e \mid x \mid e \mid e \mid c \]
\[v := \lambda x. e \mid c \]
\[\tau := \text{int} \mid \tau \rightarrow \tau \]

\[e \rightarrow e' \]

\[(\lambda x. e) v \rightarrow e[v/x] \]
\[e_1 \rightarrow e'_1 \]
\[e_2 \rightarrow e'_2 \]

\[e[e'/x] = e'' \]

\[x[e/x] = e \]
\[y \neq x \]
\[c[e/x] = c \]

\[e_1[e/x] = e'_1 \quad y \neq x \quad y \notin \text{FV}(e) \]
\[(\lambda y. e_1)[e/x] = \lambda y. e'_1 \]
\[e_1[e/x] = e'_1 \quad e_2[e/x] = e'_2 \]
\[(e_1 e_2)[e/x] = e'_1 e'_2 \]

\[\Gamma \vdash e : \tau \]

\[\begin{array}{c}
\Gamma \vdash e : \tau_1 \vdash e : \tau_2 \\
\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \\
\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \\
\Gamma \vdash e_2 : \tau_1 \\
\end{array} \]

- Preservation: If \(\cdot \vdash e : \tau \) and \(e \rightarrow e' \), then \(\cdot \vdash e' : \tau \).
- Progress: If \(\cdot \vdash e : \tau \), then \(e \) is a value or there exists an \(e' \) such that \(e \rightarrow e' \).
- Substitution: If \(\Gamma, x: \tau' \vdash e : \tau \) and \(\Gamma \vdash e' : \tau' \), then \(\Gamma \vdash e[e'/x] : \tau \).
1. (35 points) This problem adds a single toggle to IMP. The toggle has two states: up and down. A new expression form read evaluates to 1 if the toggle is currently up and 0 if the toggle is currently down. A new statement form toggle switches the state of the toggle. The judgment forms for the operational semantics are adapted accordingly.

\[
\begin{align*}
 e & ::= \ldots | \text{read} \\
 s & ::= \ldots | \text{toggle} \\
 t & ::= \text{up} | \text{down}
\end{align*}
\]

(a) Give all the inference rules for large-step expression evaluation.

(b) Give all the inference rules for small-step statement evaluation.

(c) If this statement is true, prove it formally, else give a counterexample:

If \(H ; \text{up} ; e \Downarrow c \), then \(H ; \text{up} ; e' \Downarrow c \) where \(e' \) is \(e \) with every read replaced by 1.

(d) If this statement is true, prove it formally, else give a counterexample:

(Notice the * for 0 or more steps)

If \(H ; \text{up} ; s \rightarrow^* H' ; \text{up} ; \text{skip} \), then \(H ; \text{up} ; s' \rightarrow^* H' ; \text{up} ; \text{skip} \) where \(s' \) is \(s \) with every read (in every expression) replaced by 1.
Name: ________________________________

(Extra space for answering problem 1)
2. (31 points) This problem uses Caml and continues using IMP-with-toggle from problem 1. You are given the type definitions for IMP-with-toggle and the “mysterious” function foo:

```caml
type exp = Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Read

type stmt = Skip | Assign of string * exp | Seq of stmt * stmt
            | If of exp * stmt * stmt | While of exp * stmt | Toggle
```

```caml
let foo lst =
    let rec f lst s =
      match lst with
      [] -> true
    | hd::tl -> hd <> s && f tl s in (* <> is "not equal" *)
    let rec g i =
      let t = "_t" ^ (string_of_int i) in (* ^ concatenates strings *)
      if f lst t then t else g (i+1) in
    g 0
```

(a) Document foo: What does it take and what does it return (in terms of types and values)? Do not describe how foo is implemented.

(b) Write a Caml function allVars of type stmt -> string list that returns all the variables appearing anywhere in the statement. Hints:
- Duplicate strings are fine; do not bother removing them.
- Sample solution is approximately 15 lines total.
- You will need a helper function.
- Caml’s append operator @ is very useful.

(c) IMP-with-toggle is kind of stupid because we can encode the concept in regular IMP. Describe in 1–3 English sentences how you could translate IMP-with-toggle to regular IMP.

(d) Implement the translation you described in part (c) with a Caml function translate of type stmt -> stmt. Hints:
- The result should not use Toggle or Read.
- The sample solution is approximately 20 lines total.
- You will need a helper function.
- There’s a reason parts (a) and (b) are part of this problem.
3. (13 points) This problem uses the untyped lambda-calculus and full reduction. Recall this encoding of pairs:

- “mkpair” \(\lambda x. \lambda y. \lambda z. z \ x \ y \)
- “fst” \(\lambda p. p \ \lambda x. \lambda y. \ x \)
- “snd” \(\lambda p. p \ \lambda x. \lambda y. \ y \)

We would expect a correct encoding to show “fst” (“mkpair” \(z \ z \)) evaluates to \(z \). But this sequence of steps allegedly shows that “fst” (“mkpair” \(z \ z \)) evaluates to “fst”:

\[
\begin{align*}
(\lambda p. p \ \lambda x. \lambda y. \ x)((\lambda x. \lambda y. \lambda z. z \ x \ y) \ z \ z) \\
\rightarrow (\lambda p. p \ \lambda x. \lambda y. \ x)((\lambda y. \lambda z. z \ z \ y) \ z) \\
\rightarrow (\lambda p. p \ \lambda x. \lambda y. \ x)(\lambda z. z \ z \ z) \\
\rightarrow (\lambda z. z \ z \ z) \ \lambda x. \lambda y. \ x \\
\rightarrow (\lambda x. \lambda y. \ x) (\lambda x. \lambda y. x) (\lambda x. \lambda y. x) \\
\rightarrow (\lambda y. (\lambda x. \lambda y. x)) (\lambda x. \lambda y. x) \\
\rightarrow \lambda x. \lambda y. x
\end{align*}
\]

(a) The sequence of steps is wrong. Which steps are wrong and why are they wrong?

(b) Show a correct sequence of steps that produces \(z \) but is otherwise very similar to the sequence of steps shown above.
4. (10 points) In this problem, assume the simply-typed lambda calculus. For each of the following:

- If the answer is yes, give an example \(\Gamma \) and \(\tau \).
- If the answer is no, you can just say “no.”

(a) Is there a \(\Gamma \) and \(\tau \) such that \(\Gamma \vdash (\lambda x. x) \ x : \tau \)?
(b) Is there a \(\Gamma \) and \(\tau \) such that \(\Gamma \vdash \lambda x. (x \ x) : \tau \)?
(c) Is there a \(\Gamma \) and \(\tau \) such that \(\Gamma \vdash x \ x : \tau \)?
(d) Is there a \(\Gamma \) and \(\tau \) such that \(\Gamma \vdash x \ (\lambda x. x) : \tau \)?
5. (11 points) Consider this lemma, which is slightly different from the Preservation Lemma we proved for the simply-typed lambda calculus:

Differently Preserved: If $\cdot \vdash e : \tau$ and $e \rightarrow e'$, then there exists a τ' such that $\cdot \vdash e' : \tau'$.

(a) Is the Differently Preserved Lemma weaker, stronger, or incomparable to the Preservation Lemma? Explain.

(b) Is the Differently Preserved Lemma true? Explain.

(c) Is the Differently Preserved Lemma (instead of the Preservation Lemma) and the Progress Lemma sufficient to prove Type Safety? Explain.

(d) Explain why we proved the Preservation Lemma instead of just the Differently Preserved Lemma.