Name: \qquad

CSE505, Winter 2012, Midterm Examination February 7, 2012

Rules:

- The exam is closed-book, closed-notes, except for one side of one 8.5×11 in piece of paper.
- Please stop promptly at 10:20.
- You can rip apart the pages, but please write your name on each page.
- There are 100 points total, distributed unevenly among 5 questions (which have multiple parts).

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you get to all the problems.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad
For your reference:

$$
\begin{aligned}
s & ::=\text { skip }|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s \\
e & ::=c|x| e+e \mid e * e \\
(c & \in\{\ldots,-2,-1,0,1,2, \ldots\}) \\
(x & \left.\in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{z}_{1}, \mathbf{z}_{2}, \ldots, \ldots\right\}\right)
\end{aligned}
$$

$$
H ; e \Downarrow c
$$

$$
H_{1} ; s_{1} \rightarrow H_{2} ; s_{2}
$$

SEQ1
$\overline{H ; \text { skip } ; s \rightarrow H ; s}$

SEQ2
$\frac{H ; s_{1} \rightarrow H^{\prime} ; s_{1}^{\prime}}{H ; s_{1} ; s_{2} \rightarrow H^{\prime} ; s_{1}^{\prime} ; s_{2}}$

IF1 IF2
$\frac{H ; e \Downarrow c \quad c>0}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{1}} \quad \begin{gathered}H ; e \Downarrow c \quad c \leq 0 \\ H \text {; if } e s_{1} s_{2} \rightarrow H ; s_{2}\end{gathered} \quad \begin{aligned} & H \text {; while } e s \rightarrow H ; \text { if } e(s ; \text { while } e \text { s) skip }\end{aligned}$

$$
\begin{aligned}
e & ::=\lambda x \cdot e|x| \text { e e } \mid c \\
v & ::=\lambda x \cdot e \mid c \\
\tau & ::=\text { int } \mid \tau \rightarrow \tau
\end{aligned}
$$

$e \rightarrow e^{\prime}$

$$
\overline{(\lambda x . e) v \rightarrow e[v / x]} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v e_{2} \rightarrow v e_{2}^{\prime}}
$$

$$
e\left[e^{\prime} / x\right]=e^{\prime \prime}
$$

$$
\begin{array}{rc}
\frac{y \neq x}{x[e / x]=e} & \frac{y}{y[e / x]=y} \\
\frac{e_{1}[e / x]=e_{1}^{\prime} \quad y \neq x}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda y \cdot e_{1}^{\prime}} & \frac{e_{1}[e / x]=e_{1}^{\prime} \quad e_{2}[e / x]=e_{2}^{\prime}}{\left(e_{1} e_{2}\right)[e / x]=e_{1}^{\prime} e_{2}^{\prime}}
\end{array}
$$

$\Gamma \vdash e: \tau$
$\overline{\Gamma \vdash c: \mathrm{int}} \quad \overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}$

- Preservation: If $\cdot \vdash e: \tau$ and $e \rightarrow e^{\prime}$, then $\cdot \vdash e^{\prime}: \tau$.
- Progress: If $\cdot \vdash e: \tau$, then e is a value or there exists an e^{\prime} such that $e \rightarrow e^{\prime}$.
- Substitution: If $\Gamma, x: \tau^{\prime} \vdash e: \tau$ and $\Gamma \vdash e^{\prime}: \tau^{\prime}$, then $\Gamma \vdash e\left[e^{\prime} / x\right]: \tau$.

Name: \qquad

1. ($\mathbf{3 5}$ points) This problem adds a single toggle to IMP. The toggle has two states: up and down. A new expression form read evaluates to 1 if the toggle is currently up and 0 if the toggle is currently down. A new statement form toggle switches the state of the toggle. The judgment forms for the operational semantics are adapted accordingly.

$$
\begin{array}{llll}
e & ::= & \ldots \mid \text { read } & \\
s & ::=\ldots \mid \text { toggle } & H ; t ; e \Downarrow c & H ; t ; s \rightarrow H^{\prime} ; t^{\prime} ; s^{\prime} \\
t & ::=\text { up } \mid \text { down } & &
\end{array}
$$

(a) Give all the inference rules for large-step expression evaluation.
(b) Give all the inference rules for small-step statement evaluation.
(c) If this statement is true, prove it formally, else give a counterexample:

If H; up ; $e \Downarrow c$, then H; up ; $e^{\prime} \Downarrow c$ where e^{\prime} is e with every read replaced by 1 .
(d) If this statement is true, prove it formally, else give a counterexample:
(Notice the $*$ for 0 or more steps)
If H; up ; $s \rightarrow^{*} H^{\prime}$; up; skip, then $H ;$ up $; s^{\prime} \rightarrow^{*} H^{\prime}$; up; skip where s^{\prime} is s with every read (in every expression) replaced by 1 .

Solution:

(a)

$$
\begin{gathered}
\overline{H ; t ; c \Downarrow c} \quad \overline{H ; t ; x \Downarrow H(x)} \quad \frac{H ; t ; e_{1} \Downarrow c_{1} H ; t ; e_{2} \Downarrow c_{2}}{H ; t ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}} \\
\frac{H ; t ; e_{1} \Downarrow c_{1} \quad H ; t ; e_{2} \Downarrow c_{2}}{H ; t ; e_{1} * e_{2} \Downarrow c_{1} * c_{2}} \overline{H ; \text { up ; read } \Downarrow 1} \quad \overline{H ; \operatorname{down} ; \text { read } \Downarrow 0}
\end{gathered}
$$

(b)

$$
\begin{array}{cc}
\frac{H ; t ; e \Downarrow c}{} & \overline{H ; t ; \text { skip } ; s \rightarrow H ; t ; s} \\
\frac{H ; t ; x:=e \rightarrow H, x \mapsto c ; t ; \text { skip }}{H ; t ; s_{1} ; s_{2} \rightarrow H^{\prime} ; t^{\prime} ; t^{\prime} ; s_{1}^{\prime}} s_{1}^{\prime} ; s_{2} & \overline{H ; t ; \text { if } e s_{1} s_{2} \rightarrow H ; t ; s_{1}} \\
\frac{H ; t ; e \Downarrow c \quad c \leq 0}{H ; t ; \text { if } e s_{1} s_{2} \rightarrow H ; t ; s_{2}} \quad \overline{H ; t ; \text { while } e s \rightarrow H ; t ; \text { if } e(s ; \text { while } e s) \text { skip }} \\
\overline{H ; \text { up ; toggle } \rightarrow H ; \text { down; skip }} & \overline{H ; \text { down ; toggle } \rightarrow H ; \text { up; skip }}
\end{array}
$$

(c) see next page
(d) see next page

Name: \qquad
(Extra space for answering problem 1)

Solution:

(c) This statement is true. We prove it by induction on the derivation of H; up ; $e \Downarrow c$, proceeding by cases on the bottommost rule in the derivation:

- If e is a constant, then $e^{\prime}=e$ so the assumed derivation is the derivation we need.
- If e is a variable, then $e^{\prime}=e$ so the assumed derivation is the derivation we need.
- If e is $e_{1}+e_{2}$ for some e_{1} and e_{2}, then $H ;$ up ; $e_{1} \Downarrow c_{1}$ and $H ;$ up ; $e_{2} \Downarrow c_{2}$ where $c=c_{1}+c_{2}$. So by induction $H ;$ up ; $e_{1}^{\prime} \Downarrow c_{1}$ and $H ;$ up ; $e_{2}^{\prime} \Downarrow c_{2}$ where e_{1}^{\prime} and e_{2}^{\prime} are e_{1} and e_{2} with read replaced by 1 . So we can use the rule for addition to derive $H ;$ up ; $e_{1}^{\prime}+e_{2}^{\prime} \Downarrow c_{1}+c_{2}$. This is what we need because $e_{1}^{\prime}+e_{2}^{\prime}$ is e with read replaced by 1 and $c=c_{1}+c_{2}$.
- If e is $e_{1} * e_{2}$ for some e_{1} and e_{2}, then $H ;$ up ; $e_{1} \Downarrow c_{1}$ and $H ;$ up ; $e_{2} \Downarrow c_{2}$ where $c=c_{1} * c_{2}$. So by induction H; up ; $e_{1}^{\prime} \Downarrow c_{1}$ and $H ;$ up ; $e_{2}^{\prime} \Downarrow c_{2}$ where e_{1}^{\prime} and e_{2}^{\prime} are e_{1} and e_{2} with read replaced by 1 . So we can use the rule for multiplication to derive H; up ; $e_{1}^{\prime} * e_{2}^{\prime} \Downarrow c_{1} * c_{2}$. This is what we need because $e_{1}^{\prime} * e_{2}^{\prime}$ is e with read replaced by 1 and $c=c_{1} * c_{2}$.
- If e is read and the toggle is up, then c is 1 and e^{\prime} is 1 and we can use the rule for constants to derive $H ;$ up ; $1 \Downarrow 1$.
- The rule where e is read and the toggle is down cannot end the derivation of H; up ; $e \Downarrow c$, so this case holds vacuously.
(d) This statement is false. There are an infinite number of countexamples, such as:
.; up ; toggle; $(x:=$ read; toggle $) \rightarrow^{*}$., $x \mapsto 0$; up; skip, but
.; up ; toggle; $(x:=1$; toggle $) \rightarrow^{*}$., $x \mapsto 1$; up; skip

Name: \qquad
2. (31 points) This problem uses Caml and continues using IMP-with-toggle from problem 1. You are given the type definitions for IMP-with-toggle and the "mysterious" function foo:

```
type exp = Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Read
type stmt = Skip | Assign of string * exp | Seq of stmt * stmt
                        | If of exp * stmt * stmt | While of exp * stmt | Toggle
let foo lst =
    let rec f lst s =
                match lst with
                    [] -> true
        | hd::tl -> hd <> s && f tl s in (* <> is "not equal" *)
    let rec g i =
                let t = "_t" ^ (string_of_int i) in (* ` concatenates strings *)
        if f lst t then t else g (i+1) in
    g 0
```

(a) Document foo: What does it take and what does it return (in terms of types and values)? Do not describe how foo is implemented.
(b) Write a Caml function allVars of type stmt -> string list that returns all the variables appearing anywhere in the statement. Hints:

- Duplicate strings are fine; do not bother removing them.
- Sample solution is approximately 15 lines total.
- You will need a helper function.
- Caml's append operator @ is very useful.
(c) IMP-with-toggle is kind of stupid because we can encode the concept in regular IMP. Describe in 1-3 English sentences how you could translate IMP-with-toggle to regular IMP.
(d) Implement the translation you described in part (c) with a Caml function translate of type stmt -> stmt. Hints:
- The result should not use Toggle or Read.
- The sample solution is approximately 20 lines total.
- You will need a helper function.
- There's a reason parts (a) and (b) are part of this problem.

Solution:

(next page)

Name: \qquad
(Extra space for answering problem 2)

Solution:

(a) foo has type string list \rightarrow string. It returns the string _t i where i is (the string representation of) the smallest natural number such that _t i is not in the argument list.
(b) let rec allVarsE e =
match e with
Int _ -> []
| Var s -> [s]
| Plus(e1,e2) -> (allVarsE e1) @ (allVarsE e2)
| Times(e1,e2) -> (allVarsE e1) @ (allVarsE e2)
| Read -> []
let rec allVars s =
match s with
Skip -> []
| Toggle -> []
| Assign(x,e) -> x :: (allVarsE e)
| If (e,s1,s2) -> (allVarsE e) @ (allVars s1) @ (allVars s2)
| While(e,s1) -> (allVarsE e) @ (allVars s1)
| Seq(s1,s2) -> (allVars s1) @ (allVars s2)
(c) We can use a new IMP variable x not otherwise used in the program to hold the current toggle (1 for up, 0 for down). Then we can replace read with reading x and toggle with $x:=1+(-1 * x)$ (or if $x x:=0 x:=1$).
(d) let translate $\mathrm{s}=$
let $\mathrm{v}=\mathrm{foo}$ (allVars s) in
let rec xe e =
match e with
Int _ -> e
| Var _ -> e
| Plus(e1,e2) -> Plus(xe e1, xe e2)
| Times(e1,e2) -> Times(xe e1, xe e2)
| Read -> Var v in
let rec xs s =
match s with
Skip -> Skip
| Toggle -> Assign(v,Plus(Int 1,Times(Int (-1),Var v)))
(* alternately $\operatorname{If}(\operatorname{Var}(\mathrm{v})$, Assign(v, Int 0),Assign(v,Int 1)) *)
| Assign(x,e) -> Assign(x, xe e)
| If(e,s1,s2) -> If(xe e, xs s1, xs s2)
| Seq(s1,s2) -> Seq(xs s1, xs s2)
| While(e,s) -> While(xe e, xs s)
in $x s$ s

Name: \qquad
3. ($\mathbf{1 3}$ points) This problem uses the untyped lambda-calculus and full reduction. Recall this encoding of pairs:

- "mkpair" $\lambda x . \lambda y . \lambda z . z x y$
- "fst" λp. $p \lambda x$. λy. x
- "snd" $\lambda p . p \lambda x . \lambda y . y$

We would expect a correct encoding to show "fst" ("mkpair" $z z$) evaluates to z. But this sequence of steps allegedly shows that "fst" ("mkpair" $z z$) evaluates to "fst":

$$
\begin{aligned}
& (\lambda p \cdot p \lambda x \cdot \lambda y \cdot x)((\lambda x \cdot \lambda y \cdot \lambda z \cdot z x y) z z) \\
\rightarrow & (\lambda p \cdot p \lambda x \cdot \lambda \cdot x)((\lambda y \cdot \lambda z \cdot z z y) z) \\
\rightarrow & (\lambda p \cdot p \lambda x \cdot \lambda y \cdot x)(\lambda z \cdot z z z)) \\
\rightarrow & (\lambda z \cdot z z z) \lambda x \cdot \lambda y \cdot x \\
\rightarrow & (\lambda x \cdot \lambda y \cdot x)(\lambda x \cdot \lambda y \cdot x)(\lambda x \cdot \lambda y \cdot x) \\
\rightarrow & (\lambda y \cdot(\lambda x \cdot \lambda y \cdot x))(\lambda x \cdot \lambda y \cdot x) \\
\rightarrow & \lambda x \cdot \lambda y \cdot x
\end{aligned}
$$

(a) The sequence of steps is wrong. Which steps are wrong and why are they wrong?
(b) Show a correct sequence of steps that produces z but is otherwise very similar to the sequence of steps shown above.

Solution:

(a) The first two steps both capture z. We should α-convert $\lambda z . z x y$ in order to perform these first two steps properly.
(b)

$$
\begin{aligned}
& (\lambda p \cdot p \lambda x \cdot \lambda y \cdot x)((\lambda x \cdot \lambda y \cdot \lambda z \cdot z x y) z z) \\
\rightarrow & (\lambda \cdot p \cdot p \lambda \cdot \lambda \cdot \lambda \cdot x)((\lambda y \cdot \lambda q \cdot q z y) z) \\
\rightarrow & (\lambda \cdot p \lambda x \cdot \lambda \cdot x)(\lambda q \cdot q z z)) \\
\rightarrow & (\lambda q \cdot q z z) \lambda x \cdot \lambda y \cdot x \\
\rightarrow & (\lambda x \cdot \lambda y \cdot x) z z \\
\rightarrow & (\lambda y \cdot z) z \\
\rightarrow & z
\end{aligned}
$$

Name: \qquad
4. (10 points) In this problem, assume the simply-typed lambda calculus. For each of the following:

- If the answer is yes, give an example Γ and τ.
- If the answer is no, you can just say "no."
(a) Is there a Γ and τ such that $\Gamma \vdash(\lambda x, x) x: \tau$?
(b) Is there a Γ and τ such that $\Gamma \vdash \lambda x .(x x): \tau$?
(c) Is there a Γ and τ such that $\Gamma \vdash x x: \tau$?
(d) Is there a Γ and τ such that $\Gamma \vdash x(\lambda x . x): \tau$?

Solution:

(a) Yes, for example $\Gamma=\cdot, x$:int and $\tau=$ int. In general, the type of x in Γ has to be τ.
(b) No
(c) No
(d) Yes, for example $\Gamma=\cdot, x:$ (int $\rightarrow \mathrm{int}) \rightarrow$ int and $\tau=\mathrm{int}$. In general, the type of x in Γ has to have the form $\left(\tau^{\prime} \rightarrow \tau^{\prime}\right) \rightarrow \tau$.

Name: \qquad
5. ($\mathbf{1 1}$ points) Consider this lemma, which is slightly different from the Preservation Lemma we proved for the simply-typed lambda caculus:

Differently Preserved: If $\cdot \vdash e: \tau$ and $e \rightarrow e^{\prime}$, then there exists a τ^{\prime} such that $\cdot \vdash e^{\prime}: \tau^{\prime}$.
(a) Is the Differently Preserved Lemma weaker, stronger, or incomparable to the Preservation Lemma? Explain.
(b) Is the Differently Preserved Lemma true? Explain.
(c) Is the Differently Preserved Lemma (instead of the Preservation Lemma) and the Progress Lemma sufficient to prove Type Safety? Explain.
(d) Explain why we proved the Preservation Lemma instead of just the Differently Preserved Lemma.

Solution:

(a) It is weaker: The Preservation Lemma implies the Differently Preserved Lemma just by choosing τ^{\prime} to be τ. (Something is weaker than something else that implies it.)
(b) Yes, the Preservation Lemma is true and it implies the Differently Preserved Lemma.
(c) Yes, just like the Preservation Lemma, the Differently Preserved Lemma and induction on the number of steps taken ensure that no well-typed program can become ill-typed. And Progress ensures no well-typed program is stuck.
(d) Because the Differently Preserved Lemma has too weak an induction hypothesis for the proof to go through. For example, when $e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}$ because $e_{1} e_{1}^{\prime}$, it's not enough to know that e_{1}^{\prime} has some type. We need to know it has the same type as e_{1} to show that $e_{1}^{\prime} e_{2}$ still type-checks.

